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Habitat disturbance is one of the main factors contributing to population declines. Changes in the amount and quality of available 
habitat can affect body condition and morphology. In this study we evaluated the effect of habitat disturbance (deforestation, 
urbanisation and land-use change) on body size, body condition and fluctuating asymmetry in two species of arboreal tropical 
frogs (Agalychnis callidryas and Dendropsophus ebraccatus) at Los Tuxtlas Biosphere Reserve, Veracruz, México. We did not 
find significant differences in body condition or body size associated with habitat disturbance in A. callidryas, although the 
species reduced its local distribution in line with habitat disturbance. In D. ebraccatus, on the other hand, we observed a 
significant relationship between body condition and size with habitat disturbance. It is unknown whether these changes 
are adaptive or compromise the permanence of populations. Fluctuating asymmetry indices for both species exhibited no 
significant differences except for the tibia-fibula length of D. ebraccatus, which was significantly higher in undisturbed habitat. 

Key words: Agalychnis callidryas, body condition, body size, Dendropsophus ebraccatus, fluctuating asymmetry, habitat 
disturbance, Hylidae

INTRODUCTION

Habitat loss and fragmentation are the two most 
important factors causing biodiversity loss (Henle 

et al., 2004a). Land use changes have led to the decline 
and deterioration of habitats, resulting in the reduction 
of habitat quality (Henle et al., 2004b). Changes in 
microclimate and food availability affect the physiology 
of organisms. These changes may increase mortality or 
interrupt dispersal processes, and thereby increase the 
risk of decline and local extinction. Habitat changes may 
also affect the abundances of predators and prey as well 
as parasites and pathogens (Lips, 1999).

Changes in the environment can lead to changes in 
the morphology of organisms (Sumner et al., 1999). 
For example, size and body condition may decrease 
in response to changes in habitat quality (Lauk, 2006; 
Delgado-Acevedo & Restrepo, 2008; Henríquez et al., 
2009). Transformed habitat conditions can also cause 
stress in resident populations, inducing changes during 
development that result in morphological asymmetry 
(Lens et al., 2002; Wright & Zamudio, 2002). Fluctuating 
asymmetry (FA) is a pattern of random deviations from 
symmetry of bilateral characters (Palmer & Strobeck, 
1992), and has been used as an indirect measure of 
developmental instability in populations subjected to 
different environmental stressors (Hoffmann & Woods, 
2003; Söderman et al., 2007). In some species, asymmetry 

increases with the degree of habitat disturbance (Sarre, 
1996; Wright & Zamudio, 2002).

Rainforests are the most diverse terrestrial 
ecosystems, and are rapidly disappearing due to high 
rates of deforestation. In Mexico, 80–90% of rainforests 
have been cleared or severely altered by human activities 
such as logging, livestock production, farming and 
urbanisation (Guevara et al., 2004). The most important 
Mexican boreal remnant rainforest is situated in Los 
Tuxtlas, Veracruz. Currently, Los Tuxtlas consists of forest, 
pastures, and crop fields in the lowlands (Dirzo & Garcia, 
1992; Guevara et al., 2004). The region, encompassing 
an area of 155,122 ha, was declared a Natural Protected 
Area and a Biosphere Reserve in 1998 (CONANP & 
SEMARNAT, 2006).

The red-eyed tree frog (Agalychnis callidryas Cope, 
1862) and the hourglass tree frog (Dendropsophus 
ebraccatus Cope, 1874) are both members of the family 
Hylidae and have a wide distribution stretching from 
Southern México to Costa Rica and Colombia, respectively 
(Duellman, 1970). Agalychnis callidryas is 40–60 mm in 
snout vent length (SVL), and D. ebraccatus is <30 mm 
in SVL (Duellman, 1970; Rodríguez-Mendoza & Pineda, 
2010). They are frequently found in the rainy season 
on vegetation overhanging permanent and temporary 
ponds where they breed (Duellman, 1970; Warkentin 
2000). Their eggs are deposited on leaves, and tadpoles 
fall into the water for development to metamorphosis 
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(Vogt, 1997; Cedeño-Vázquez et al., 2006). Both species 
have an extended breeding season (Donelly & Guyer, 
1994). Land use changes, global climate change, and 
pollution are considered risk factors for both species 
in Mexico (Solís et al., 2008; Jungfer et al., 2008), and 
records for both species are rare compared to other frogs 
(Urbina-Cardona & Reynoso, 2005; Rodríguez-Mendoza & 
Pineda, 2010). While no data are available on population 
trends (Frías-Álvarez et al., 2010), both species may be 
tolerant of habitat disturbance, as they have been found 
in orchards, secondary vegetation, pastures and habitat 
edges (Duellman 1970; Cedeño-Vázquez et al., 2006). 
The aim of this study is to evaluate the effect of habitat 
disturbance on both tree frog species. We test the 
following predictions: i) habitat disturbance influences 
adult size and body condition and ii) the asymmetry 
of bilateral characters will increase with the degree of 
environmental disturbance.

MATERIALS AND METHODS

This study was conducted in the northern part of Los 
Tuxtlas Biosphere Reserve, an area with a complex 
topography. Original forest vegetation is found primarily 
on hills and ridges, whereas the lowlands have been 
converted into grasslands, crop fields and villages. The 
main remaining patch of lowland rainforest is situated 
in the Biological Station of UNAM (Universidad Nacional 
Autónoma de México, Fig. 1).

The study area was surveyed with the aid of local 
guides until a total of 11 sites with permanent and semi-
permanent breeding ponds were found and included in 
our sampling design; a random design was impossible 
because the most pristine areas are in the highlands and 
are not suitable for the formation of breeding ponds 
for A. callidryas and D. ebraccatus (Fig. 1). The degree 
of habitat perturbation was categorised as Undisturbed 
(UD), Low Disturbance (LD), Intermediate Disturbance 
(ID) or High Disturbance (HD) based on knowledge and 
experience (Table 1). We manually collected individuals 
at night during the rainy season between July and 
December 2009–2011 (125 days in total). Each site was 
visited only once, with the exception of sites 7 and 10 
(Table 1) which are represented by individuals collected 
on two different years. At each site, we collected at least 
10 calling males per species, which had well-developed 
nuptial pads as described by Duellman (1970). After 
capture, each individual was weighed with a digital scale 
(±0.01 g), and snout vent length (SVL) was measured with 
a digital caliper (±0.01 cm). Because asymmetry analyses 
require high accuracy (Palmer, 1994), captured animals 
were euthanised with 5% Xylocaine and fixed with 10% 
formaldehyde. The length of the tibia-fibula was measured 
from the knee to the ankle joint, and femur length was 
measured from the knee to the tight joint (following 
Lauk, 2006; Delgado-Acevedo & Restrepo, 2008; Plăiaşu 
et al., 2012). Three replicate measurements were taken 
to reduce measurement error (ME). All measurements 
were made by the same person.

Fig. 1. Collection sites for sampling of Agalychnis callidryas and Dendropsophus ebraccatus for length, body condition 
and limb asymmetry. The area corresponds to the northern region of the Biosphere Reserve Los Tuxtlas, Veracruz 
(México). Black areas are primary vegetation remnants, located mainly above 600 m. White areas are livestock, 
urban, and agricultural areas; circles: undisturbed habitat (UD), diamonds: low disturbance habitat (LD), triangles: 
intermediate disturbance (ID) and squares: high disturbance (HD). Within the symbols are localities numbers. 
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SVL was used as a measure of body size. Body condition 
was obtained using the scaled mass index (SMI, Peig & 
Green, 2009; 2010; MacCracken & Stebbins, 2012). We 
used an ordinary least squares regression to estimate 
SMI parameters. SMI and body size were averaged by 
category of habitat disturbance for each species. The 
total number of specimens was 65 and 196 individuals 
of A. callidryas and D. ebraccatus, respectively. The 
normality distribution and homogeneity of variances 
of the sample data were tested before constructing a 
general linear model. SVL and SMI were considered 
response variables, and the disturbance category a 
fixed factor. Each response variable was evaluated in a 
separate analysis. 

Limbs were assessed in terms of fluctuating asymmetry 
(FA) following Palmer (1994) and Palmer & Strobeck 
(2003). We obtained data on the tibia-fibula and femur 
lengths from 63 and 105 individuals of A. callidryas and D. 
ebraccatus, respectively. Factors that obscure the analysis 
of FA (i.e., directional asymmetry, antisymmetry and 
trait size) were ruled out as follows. First, we performed 
a two-way model ANOVA with individual as a random 
factor and side as a fixed factor (Palmer & Strobeck, 
2003). Significant interaction terms (side x individual) 
suggested the presence of antisymmetry or FA (Palmer 
& Strobeck, 2003). Then, we calculated measurement 
error as MSE / MSSI × 100, with MSE and MSSI being 
mean squares of error and interaction, respectively. We 
estimated repeatability with the ME5 index (MSE / MSSI 
+ (n-1) MSE). To confirm that directional asymmetry (DA) 
was absent, we performed a one-sided t test comparing 
the mean of (R-L) to zero for each trait in each habitat for 
each species. Finally, we assessed antisymmetry with the 
Kolmogorov-Smirnov test for differences from normality 
for the difference between of sides ([R-L]) of the tibia-
fibula and femur lengths (Parris & Cornelius, 2004). A 

non-normal distribution is indicative of antisymmetry, 
whereas a normal distribution with a mean of zero is 
indicative of FA (Polak, 2003). Trait size may also confound 
estimates of FA. To check for size dependence of trait 
size in trait variation, we performed a linear regression 
between the asymmetry absolute value of R-L (│R-L│) 
and trait size ((R+L)/2) as independent variable for each 
habitat disturbance category. 

We calculated three FA indices described in Palmer & 
Strobeck (2003) for each species, trait and category of 
disturbance: FA1, FA4a, and FA10a. FA1 (mean |R-L|) is 
the recommended index because it is easy to interpret, 
but for small sample sizes (n<30) has low statistical 
power. FA4a (0.798 √var(R-L)) has higher statistical power 
and represents the contribution of FA measurement 
error (ME, Bechshoft et al., 2008); FA10a (0.798 √2σi

2) 
is recommended because it describes the difference 
between the sides after ME has been removed (Palmer 
& Strobeck, 2003). Given that the FA1 (|R-L|) in each 
category did not deviate from a normal distribution, the 
data were analysed using a general linear model with 
categories of habitat disturbance as an explanatory factor 
and FA1 as the response variable. All statistical analyses 
were performed in R v.2.1.3.1 (The R Foundation for 
Statistical Computing, 2011) and Statistica for Windows 
v.7.0 (StatSoft, Inc. 2004). 

RESULTS

Body size and condition
Agalychnis callidryas was found only in the three least-
disturbed categories (UD, LD and ID). Individuals from UD 
and LD sites were larger compared to ID individuals (Fig. 
2a), a differences which was however not statistically 
significant (F3,195=1.068, p=0.349). In D. ebraccatus, 
significant differences in body size were found between 

Table 1. Sampling sites, habitat type and degree of disturbance. (UD: undisturbed, LD: low disturbance; ID: intermedi-
ate disturbance and HD: highly disturbed). Site numbers correspond to each location in Fig. 1. Species: A=Agalychnis 
callidryas and D=Dendropsophus ebraccatus.

 

Locality   Habitat type Species Disturbance 
Category

1 Laguna El Zacatal continuous rainforest A, D UD

2 Potrero Ejido 2 de Abril rainforest fragment <1 ha. A LD

3 Nanciyaga Ecological Park rainforest fragment >40 ha. D LD

4 La Jungla Park, Catemaco rainforest fragment >40 ha. (artificial pond) A LD

5 Playa Escondida reed patch A, D LD

6 Laguneta de El Real, Sonteco-
mapan

disturbed mangrove, urban zone A ID

7 La Cruz, near Tebanca macrophyte patch near pasture D ID

8 Villa El Cariño. Ejido 2 de Abril  pasture D HD

9 Road to Playa Escondida pasture D HD

10 Las Margaritas flooded plot, urban zone D HD

11 Deviation to San Juan Seco   Pasture, highway on one side D HD
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the UD habitat and the other categories (F3,195=23.4, 
p<0.001; Fig. 2a). We did not find significant differences 
in A. callidryas body condition among categories of 
habitat disturbance (F2,64=2.783, p=0.069; Fig. 2b). In 
D. ebraccatus, we found significant decreases in SMI 
depending on habitat disturbance (UD-LD vs. ID-HD, 
F3,195=22.485, p<0.001).

Limb asymmetry 
The interaction term was significant (p<0.001), 
demonstrating that non-directional asymmetry could be 
distinguished from measurement error. Measurement 
errors were >10% for all characters except femurs length 
of D. ebraccatus (15–30%). The repeatability of FA was 
0.6-0.8 for A. callidryas, and 0.08–0.31 for D. ebraccatus 
(Table 2).

The mean (R-L) was significantly different from zero 
(t=2.8, p=0.048) in D. ebraccatus femur lengths in the 
UD habitat, demonstrating the presence of directional 
asymmetry (DA). Therefore, DA for this character was 
removed by estimating the differences between right and 
left sides, subtracted from the larger measurement and 
added to the shorter measurement (Table 2; following 
Palmer, 1994). The Kolmogorov-Smirnov test did not 
suggest a significant departure from normality for any 
trait or species (all d-KS>0.08, p>0.05), demonstrating 
that non-directional asymmetry can be used as an 
estimate for FA. The relationship of trait size with FA1 (│R-
L│) provides no evidence of a size-dependent component 
of FA (β=-0.2–0.3, p>0.05, Table 2). 

No significant differences were found in FA1 limb traits 
with respect to habitat disturbance in A. callidryas (tibia-
fibula, F2,60=0.020, p=0.98; femur, F2,59=0.577, p=0.57, 
Table 3), while significant differences were observed 
for D. ebraccatus (F3, 101=4.843, p=0.003). A post hoc 
comparison using Tukey’s HSD test showed that UD 
exhibited a higher tibia-fibula FA1 than the remaining 
categories (Mean=0.067, SE=0.008, p<0.001). The values 
of FA4 and FA10 displayed similar asymmetry results 

(Table 3). For femur length, FA1 was higher in UD but the 
difference was not significant (F3, 101=1.5216, p=0.214, 
Table 3).

DISCUSSION

Morphological changes due to habitat transformations 
have been proposed as indicators of habitat deterioration 
and the health status of individuals in transformed 
environments (Alford et al., 1999; Delgado-Acevedo & 
Restrepo, 2008). In this work, we quantified the effects 
of habitat disturbance in two species of tropical frogs, 
A. callidryas and D. ebraccatus, in a protected area. 
Our results suggest that A. callidryas is not significantly 
affected by habitat disturbance for the measured 
morphological parameters. However, frogs were not 
found in the highly disturbed habitat, and the lack of 
statistical evidence is linked with a small sample size 
obtained in the more disturbed categories. The size and 
body condition of D. ebraccatus decreased with habitat 
disturbance, consistent with studies on other anuran 
species (Neckel-Oliveira & Gascón, 2006; Lauk, 2006; 
Delgado-Acevedo & Restrepo, 2008). Reduced body 
size and poorer body condition might be responses to 
environmental change related to increased solar radiation, 
decreased humidity, pond desiccation, and/or restricted 
food availability, all of which are outcomes of altered 
habitats (Palkovacs, 2003; Buckley et al., 2005; Lowe et 
al., 2006). Predation may also influence size and body 
condition, as habitat disturbance might require higher 
energy expenditure for predator avoidance (Camargo 
& Kapos, 1995; Ball & Baker, 1996). Alternatively, larger 
individuals might be more conspicuous, which could 
explain why small-sized individuals prevail in areas with 
higher disturbance (Martín & Lopez, 1998; Delgado-
Acevedo & Restrepo, 2008). Moreover, predation might 
accelerate the times of hatching and metamorphosis, 
resulting in a smaller adult body size (Warkentin, 1995; 
2000; Ball & Baker, 1996; Jessop et al., 2006; Touchon 

Fig. 2. Mean (circles) and standard error (bars) for (A) body size (mm, Snout Vent Length) and (B) body condition (g, 
Scaled Mass Index) for Agalychnis callidryas (black circles) and Dendropsophus ebraccatus (open circles) in relation to 
different levels of habitat disturbance in the Biosphere Reserve of Los Tuxtlas, Veracruz (México). UD: undisturbed, LD: 
low-disturbance, ID: intermediate disturbance and HD: high disturbance. The horizontal lines join habitat categories 
not significantly different from one another. 

A B
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et al., 2013). Paternal effects may also influence the 
size of individuals, as small males may sired smaller 
froglets (Briggs, 2013). In some anurans, body condition 
is lower at the end of the breeding season, due to the 
energy consumed in reproductive activities (Reading & 
Clarke, 1995). In our study, the samples were obtained 
during breeding, with the exception of one D. ebraccatus 
population which comprised smaller individuals without 
lowered body condition. Our observations might 
however also be influenced by a relationship of age with 
size and body condition (Ormerod & Tyler, 2009; Iturra-
Cid et al., 2010), and a lower average age in areas of 
higher disturbance (Semlitsch, 2008; VanderWerf, 2004). 

Habitat disturbance did not strongly influence 
limb asymmetry. In A. callidryas, FA did not exhibit a 
correlation with habitat disturbance, a finding similar to 
those of other studies (Labrie et al., 2003; Henríquez et 
al., 2009). For D. ebraccatus, the results were unexpected 
because the FA of tibia-fibula length was significantly 
higher in undisturbed areas (but see also Floate & Fox, 
2000; Lauk, 2006; Delgado-Acevedo & Restrepo, 2008; 
Hopton et al., 2009). The lack of an effect of habitat 
disturbance on FA has previously been attributed 
primarily to high measurement error, higher mortality 
of more asymmetrical individuals (Møller, 1997; Floate 
& Fox, 2000; Henríquez et al., 2009), the traits selected 
for measurement (Lens et al., 2002; Vishalakshi & Singh, 
2008; Henríquez et al., 2009), and sample size (Palmer, 
1994; Delgado-Acevedo & Restrepo, 2008). In this study, 
the measurement error was low (<30%). We do not know 
whether the measured traits are linked to individual 
fitness (Lauk, 2006), and the possibility of differential 
mortality at sites with higher disturbance is difficult to 
test. Floate & Fox (2000) considered that, under lower 
stress or a lack of environmental disturbance, the 
presence of individuals with extreme asymmetry can 
significantly skew the normal frequency distribution of 
FA. In this study, all samples were normally distributed, 
which makes increased mortality in sites with higher 
disturbance unlikely. However, differential mortality 
could also occur in earlier life stages (see for example 
Gagliano et al., 2008). 

Small sample sizes can be translated into low statistical 
power (Delgado-Acevedo & Restrepo, 2008), and uneven 
sample size might have contributed to the differences 
found between A. callidryas and D. ebraccatus. Most 
ponds in disturbed areas were temporary, and migration 
to less disturbed areas after metamorphosis is possible. 
It is however unknown to what extent FA is retained 
between different stages in amphibians. Growth and 
metamorphosis influence adult size (Halliday & Verrell, 
1988), whereas developmental stability is related to 
growth rate (Danzmann et al., 1986; McKenzie & O’Farrell, 
1993). At a higher stability of development, FA will be 
lower (Palmer & Strobeck, 1992). In disturbed or high 
stress environments, metamorphosis and growth can be 
accelerated (Lowe et al., 2006; Crump, 1989), leading to 
both lower body size and FA (Møller & Manning, 2003).

Agalychnis callidryas was previously more abundant 
in undisturbed areas (Vogt, 1997), and local declines 
were reported (Urbina-Cardona & Reynoso, 2005; 

Urbina-Cardona et al., 2006; Rodríguez & Pineda, 2009; 
Cabrera-Guzmán & Reynoso, 2012). In this work, sites 
with intermediate and high disturbance are located in 
deforested areas with practically no tree cover or ground 
vegetation above 2 m in height, vegetation features which 
are essential to the breeding habitat of A. callidryas. Also, 
illegal markets in México City are supplied with individuals 
from Los Tuxtlas (personal observation), which might put 
the remaining populations at greater risk. 

Dendropsophus ebraccatus was found across the 
entire gradient of habitat disturbance, despite an 
influence on body size and condition. We do not know to 
what extent the morphological changes caused by habitat 
disturbance are adaptive, and lack data on population 
trends. Habitat disturbance can exert long-term pressure 
on a population’s demography due to the continual loss 
of particular individuals through direct mortality (Dodd 
& Smith, 2003). We consider D. ebraccatus as a suitable 
indicator of environmental change (following Caro & 
O’Doherty, 1999).
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