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We explored age-related parameters and growth patterns in a population of Dermatonotus muelleri inhabiting the Arid Chaco, 
at the southern limit of the species’ distribution range using skeletochronology. In addition, we studied sexual size dimorphism 
and female reproductive investment. Males and females attained sexual maturity at a similar age (2 years) and both had a 
low reproductive lifespan (3 years). Females were significantly larger than males and had a higher reproductive investment 
compared to other anurans. The growth rate coefficient (k) was similar in males (1.14) and females (1.07), indicating that the 
sexual size dimorphism in this species is caused by differentiated growth before sexual maturity. Overall, we suggest that the 
short reproductive lifespan justifies the high reproductive investment in the studied population.
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INTRODUCTION

Amphibians are suffering a severe worldwide decline, 
with nearly one-third (32.5%) of the species 

threatened (Stuart et al., 2004), mostly due to habitat loss 
and fragmentation (Gibbons et al., 2000; Cushman, 2006; 
Gardner et al., 2007). Almost half of all known amphibian 
species occur in the Neotropical realm, of which 38% 
are considered to be globally threatened (Bolaños et 
al., 2008). While the Neotropics is considered the global 
epicentre of catastrophic decline for amphibians, there 
is still a high rate of species descriptions from this area, 
which tends only to add new species to those already 
under severe decline. Sound conservation measures in 
this region are hampered by the limited knowledge on 
the life history and habitat requirements of the species 
of concern.  

Demographic life-history traits are essential for 
understanding population dynamics and plasticity in 
response to environmental variability (Caswell, 1983). 
Age-related parameters (e.g., age at first reproduction, 
reproductive lifespan), fecundity and reproductive 
effort are some of the major life-history traits tackled 
by the life history theory (Stearns, 2000) and they are 
important components of anuran reproductive strategies 
(Duellman & Trueb, 1994). Skeletochronology, along 
with capture-mark-recapture studies, has generally 
proved to be a useful non-lethal method to estimate age 
and growth-related parameters in amphibians (Halliday 

& Verrell, 1988; Smirina, 1994; Sinsch, 2015). Age is 
estimated from bone crosscuts, based on the presence 
of lines of arrested growth (LAGs), cyclic and annular 
bone growth mainly caused by the seasonal variations 
in temperature and/or rainfall (Smirina, 1994; Sinsch et 
al., 2007). Although most of the skeletochronological 
studies focused on amphibians from temperate areas, 
there is an increasing interest towards amphibians 
from tropical and subtropical regions, where growth is 
subjected to periodicity through wet/dry seasons (e.g., 
Guarino, et al., 1998; Khonsue et al., 2000; Kumbar & 
Pancharatna, 2001; Kumbar et al., 2002; Lai et al., 2005; 
Lindquist et al., 2012; Cajade et al., 2013). Furthermore, 
there is evidence that well-expressed growth marks may 
occur in tropical and subtropical amphibians in which 
growth is not constrained by environmental conditions, 
supporting the hypothesis that LAG formation is 
ultimately caused by a general genetic control (e.g., 
Castanet et al., 1993; Marangoni et al., 2009; 2012).

The Great Chaco ecoregion, the second largest in 
South America after Amazonia, includes the largest 
seasonally dry forests on the continent (Bucher, 1982). It 
is mainly a wooded region, strongly affected by extensive 
livestock raising, extractive forestry and poorly planned 
agricultural expansion (Nature Conservancy et al., 2005; 
Nori et al., 2013). Deforestation rates in this region are 
among the highest in the world (Hoyos, 2013), and 
Chaco is considered one of the highest diversity regions 
for herpetofauna in Argentina (Vaira et al., 2012).
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Dermatonotus muelleri is a neotropical microhylid 
widely distributed in central and southern Chaco, 
from Brazil (Maranhão to São Paulo) through south-
eastern Bolivia, north-western Paraguay and northern 
Argentina, with natural populations threatened by 
habitat destruction and pet trade in Argentina and 
Paraguay (Colli et al., 2004). It is a nocturnal anuran, 
highly specialised to burrowing and preying on termites; 
it aestivates in subterranean chambers and emerges 
during the wet season, to feed and reproduce (Nomura 
et al., 2009; Nomura & Rossa-Feres, 2011). Although 
breeding is explosive and several reproductive events 
may occur during the wet season, females mate only 
once, while males are polygynous (Nomura, 2003). Larval 
development is fast and metamorphosis is completed 
within 22–26 days from egg deposition (Fabrezi et al., 
2012).

The aim of our study was to explore life history traits 
of D. muelleri. To the best of our knowledge, the present 
study is the first to investigate age and growth traits in 
this species (see however Marangoni et al., 2009). We 
determined (i) age structure parameters, (ii) growth 
patterns, (iii) sexual size dimorphism and (iv) female 
reproductive investment in a population at the southern 
limit of the species’ distribution range.

MATERIALS AND METHODS

Study area and sampling
The study area is located within the dry forests 
(Arid Chaco) of the western Great Chaco ecoregion, 
between the localities Fuerte Esperanza and Misión 
Nueva Pompeya (Chaco Province), northern Argentina. 
Natural habitats are represented by xerophytic forests 
of Schinopsis quebracho-colorado, associated with 
Aspidosperma quebracho-blanco and Prosopis spp., 
alternating with open grasslands and cacti, including 
tree-cacti (Cabrera & Willink, 1980). The climate 
is characterised by extreme seasonal temperature 
variations, ranging from 40°C in summer to occasional 
winter frost; annual mean temperatures range from 24 
to 25.5°C. The precipitation regime is strongly seasonal, 
with over 80% of the rainfall concentrated between 
October and March, while the driest months are July 
and August (Bucher, 1980; Savaria-Toledo, 1993). 

We performed nocturnal field surveys on a 10 km dirt-
road segment (Ruta Provincial no. 61: 24°56’27.99”S, 
61°29’26.69”W; 25° 1’41.53”S, 61°31’25.55”W; 150 
m.a.s.l), between 6–8 December 2013, following a 
heavy storm. In addition to D. muelleri, we recorded the 
presence of the following 21 species in the study area: 
Bufonidae (1 sp.) - Rhinella schneideri; Ceratophrydae 
(4 sp.) -  Ceratophrys cranwelli, Chacophrys pierottii, 
Lepidobatrachus laevis, L. llanensis; Hylidae (9 sp.) - 
Dendropsophus nanus, D. sanborni, Hypsiboas raniceps, 
Phyllomedusa sauvagii, Pseudis platensis, Scinax 
acuminatus, S. fuscovarius, S. nasicus, Trachycephalus 
typhonius; Leiuperidae (1 sp.) - Physalaemus 
biligonigerus;  Leptodactilidae (5 sp.) - Leptodactylus 
bufonius, L. fuscus, L. laticeps, L. latinasus, L. mystacinus; 
Microhylidae (1 sp.) - Elachistocleis bicolor.

We sampled 43 adult individuals (25 males, 18 
females) of D. muelleri from temporary ponds along 
the road, during one explosive reproductive event. We 
determined sex based on the presence of the nuptial 
pads and dark vocal sac in males, or egg masses that could 
be visualised through the skin of females. We measured 
snout-vent length (SVL) and head-width (HW) with digital 
callipers at 0.1 mm precision and body mass (BM) with 
a portable electronic balance at 0.01 g precision. We 
clipped and stored the longest toe of the right forearm 
in 70% alcohol for age assessment. Ten females and 11 
males were preserved for genetics and morphological 
studies and deposited in the herpetological Collection 
of Instituto de Biología Subtropical (National Research 
Council CONICET and Universidad Nacional de Misiones), 
Posadas, Misiones province, under acronyms LGE 7688–
7708. The remaining 22 individuals were released at the 
capture site. The sampling procedures complied with 
all relevant regulations and the necessary permits were 
obtained.

Skeletochronology
We followed the skeletochronological method of 
Castanet & Smirina (1990) with minor modifications. 
We decalcified the penultimate phalanges for 8 hours in 
5% nitric acid, washed and kept them in distilled water 
overnight. We cut 14 μm thick cross-sections using a 
Tehsys 3000 CR cryotome, stained them for 20–30 minutes 
in Ehlrich’s haematoxylin and then washed with distilled 
water for 1 hour. Sections with the smallest marrow 
cavity and the thickest cortical bone were permanently 
mounted on slides using Aquatex® (aqueous mounting 
agent for microscopy, Merk Milipore) and photographed 
using an Olympus®  E-620 microscope-mounted camera 
(Olympus CX® 31 microscope with Quick Photo Micro v. 
2.3 software). Three independent observers (FS, FM and 
DC) counted the lines of arrested growth (LAGs) in 2–3 
sections per individual. 

Reproductive investment
We determined the ovarian mass (OM) as the difference 
between the body mass before and after ovary removal, 
in nine of the preserved females (acronyms LGE 7689, 
7691-7693, 7696-699, 7705). The ovarian complement 
(OC) represents the total number of mature ova from 
each gravid female and is considered a measure of their 
fertility or reproductive potential (Crump, 1974; Basso, 
1990). We removed and weighed approximately 10% of 
each ovary and counted the mature ova under a Nikon 
C-DS magnifying glass. Mature ova had well-defined 
black and yellow poles and pronounced larger size, 
consistent with the post-vitellogenesis class (Crump, 
1974). We photographed a random sample of about 
200 ova from each ovary with a digital Nikon Coolpix 
S10 camera, mounted on a Nikon C-DS magnifying glass. 
We measured the longest and shortest perpendicular 
axes of 100 ova per sample to the nearest 0.01 mm using 
Image-Pro Plus v. 1.1 (Media Cybernetics, 1993–94). We 
determined mature ovum size (OS) by square rooting 
the product of the two axis measurements.
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Data analysis
All statistical analyses were performed in R environment, 
v. 3.0.3 (R Core Team, 2014). We used the following 
packages: stats (R Core Team, 2014), car (Fox & 
Weisberg, 2011), psych (Revelle, 2014), FSA (Ogle, 2014) 
and nlstools (Baty et al., 2014). We tested all data for 
normality and homoscedasticity using Shapiro-Wilk and 
Levene tests and chose the statistic tests accordingly. 

Age-related parameters
We computed the following age-related parameters: 
mean lifespan (i.e. mean of age distribution), longevity 
(i.e. maximum age) and potential reproductive lifespan 
(i.e. the time span between the moment of sexual 
maturity and the maximum age observed in the 
sample). Since growth rate decreases after reaching 
sexual maturity, it was possible to determine the age of 
maturation by observing this pattern in a given individual 
(Smirina, 1994). 

We used a two-sample Kolmogorov-Smirnov and 
Mann-Whitney test to check for differences in the shape 
of age distribution and median age between males and 
females. We used Spearman correlations to analyse the 
associations between age and size parameters.

Growth patterns
We computed von Bertalanffy growth model (von 
Bertalanffy, 1938) following Beverton & Holt (1957): 
SVLt= SVLmax x (1-e-k x (t- t

0
)) , where SVLt is the expected or 

average SVL at time (or age) t, SVLmax is the asymptotic 
average SVL, k is the growth rate coefficient and t0 is the 
time or age when the average SVL was zero.

We used measurements of SVL at metamorphosis 
and from 1-year juveniles (19.11 and 52.84 mm 
respectively) provided by Marangoni et al. (2009). We 
fitted a von Bertalanffy growth model and estimated 
growth parameters (VBGPs) by nonlinear least squares 
regression. Two estimated VBGPs were considered 
significantly different at the 0.95 level when their 
confidence intervals (CI 95%) did not overlap.

Sexual size dimorphism 
We checked for significant differences in size parameters 
(i.e. SVL, BM, HW) between sexes using Student’s t-test 
and alternatively, Welch’s t-test. We used Pearson 
product-moment correlation coefficient adjusted for 
small sample sizes (radj) to analyse the associations 
between these parameters.

We computed a sexual dimorphism index (SDI) with 
the results arbitrarily defined as positive when females 
are larger than males and negative in the converse 
situation (Lovich & Gibbons, 1992): 
SDI=mean sizelarger sex/ mean sizesmaller sex.  

Female reproductive investment
We estimated the ovarian size factor (OSF) which 
correlates the number and size of mature ova to body 
length, following Duellman & Crump (1974): OSF=(OC 
x OS)/SVL. Finally, we estimated the reproductive effort 
(RE) following Prado & Haddad (2000): RE=(OM/BM)
x100. We used Spearman (rho) and Pearson product-
moment correlation coefficient adjusted for small 
sample sizes (radj) to analyse the associations between 
size and reproductive parameters.

RESULTS

Age-related parameters
We were able to estimate age in all individuals and they 
all showed various degrees of endosteal resorption 
and double LAGs (Fig. 1). We were able to infer age 
at sexual maturity from the periosteal growth pattern 
in 61% of the females at 2 years, and in 44% and 
12% of the males at 2 and 3 years respectively. The 
youngest age class estimated in our sample was 2 
years in females (6%) and 3 years in males (60%). We 
thus considered that both sexes attain sexual maturity 
at the same age: 2 years. Mean lifespan did not differ 
significantly between males (mean±SD=3.48±0.65 
years) and females (mean±SD=3.39±0.69 years) (Mann-
Whitney U=213, p=0.75). Longevity and the potential 
reproductive lifespan (i.e. considering the estimated 
age at sexual maturity of 2 years) were 5 and 3 years 
respectively, in both sexes. There were no significant 
differences in the shape of age distribution between 
sexes (Kolmogorov-Smirnov Z=0.180, p=1) (Fig. 2). The 
most frequent observed age class was represented by 3 
years old individuals, indicating that most of the active 
animals were in their second reproductive year. Age was 
not significantly correlated to size (i.e. SVL, BM, HW) in 
males or females. 

Growth patterns
The relation between age and SVL fitted von Bertalanffy’s 
growth model in both sexes (Fig. 3). The asymptotic 
average snout-vent length was significantly higher in 
females, while the growth rate coefficient was similar in 
both sexes (Table 1). 

Sexual size dimorphism 
Females were significantly larger than males in all three 
parameters measured: SVL Student’s t-test: t41=5.549, 
p<0.001; BM Welch’s t-test: t23.4=11.390, p<0.001; 
HW Student’s t-test: t41=3.916, p<0.001. The sexual 
dimorphism index was 1.08 for SVL, 1.07 for HW, 1.60 
for BM. The sexual dimorphism index was much higher 
for BM since we used data from females captured 

Table 1. von Bertalanffy growth pattern statistics in D. muelleri males (n=25) and females (n=18).

Sex Parameter Estimate SD CI 95%

Males SVLmax 71.37 5.25 69.62–73.83

k   1.14 0.98   0.83–1.60

Females SVLmax 77.64 7.68 74.69–82.01

k   1.07 0.96   0.73–1.60
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Fig. 3. Growth described by von Bertalanffy’s model 
in D. muelleri males (white circles) and females (black 
triangles).Fig. 2. Age structure of the studied D. muelleri population.

Fig. 1. Phalanx cross-sections in D. muelleri: 4-year old male (left) and female (right). LAGs are indicated by black arrows 
and numbers. MC - marrow cavity, ER - endosteal resorption, E - endosteum.  

Table 2. Descriptive statistics of size measurements in D. muelleri males (n=25) and females (n=18): body mass (BM), 
snout-vent length (SVL) and head width (HW).

Sex Parameter Mean SD Min Max

Males BM (g) 32.55 3.41 25.94 41.79

SVL (mm) 70.20 2.92 64.61 74.96

HW (mm) 14.49 0.67 13.47 16.03

Females BM (g) 52.06 6.67 38.91 62.79

SVL (mm) 75.86 3.78 66.08 81.94

HW (mm) 15.41 0.86 13.81 17.35
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just before oviposition. Descriptive statistics of body 
size parameters are summarized in Table 2. We found 
significant associations between SVL and BM (radj=0.508, 
p<0.01), SVL and HW (radj=0.570, p<0.01), and BM and 
HW (radj=0.250, p<0.05) in females. We found significant 
associations only between SVL and BM (radj=0.138, 
p<0.05) in males.

Female reproductive investment
We computed the reproductive parameters in nine of the 
ten collected females (mean±SD): 15.85±1.94 g (OM), 
10611±1784 ova (OC), 1.36±0.06 mm (OS), 218.8±23.5 
(OSF) and 30.18±3.18 % (RE). OC was negatively 
correlated with OS (Spearman rho=-0.683, p<0.05), RE 
was negatively correlated to SVL (radj=0.450, p<0.05), 
while OM was positively correlated to SVL (radj=0.492, 
p<0.05).

DISCUSSION

The studied population of D. muelleri from Arid Chaco 
showed a female-biased SSD, despite similar age-related 
parameters (i.e. mean lifespan, age at sexual maturity, 
reproductive lifespan and longevity) and growth rates. 
Because of the relatively short reproductive lifespan, 
females invest up to a third of their body mass in 
reproduction. The age and growth parameters are 
similar to those found in desert anurans (i.e. early sexual 
maturity and short lifespan, Esteban et al., 1999; Sullivan 
& Fernandez, 1999) as adaptive responses to the harsh 
environmental conditions. However, the estimated 

growth parameters should be considered with caution 
considering the relatively small sample size.

Female-biased SSD is the most common pattern 
recorded in amphibians and the main proximate 
determinants proposed to explain this pattern are 
sexual selection, differences in age related parameters, 
growth and survival rates (Shine, 1979; Halliday & Verell, 
1988; Hemelaar, 1988; Shine, 1990; Monnet & Cherry, 
2002; Kupfer, 2007; Hasumi, 2010; Sinsch et al., 2010). 
Our results suit best the hypothesis that SSD might 
stem from differences in growth before sexual maturity 
(Halliday & Verell, 1988; Shine, 1990). Larger females had 
larger ovarian masses that were positively correlated to 
body size. Negative correlations were found between 
the number and the size of mature ova, and between 
the reproductive effort and body size. The only study 
providing some information related to the reproductive 
investment in D. muelleri was done by Perotti (1997), 
who found a similar ovarian complement and a high 
ovarian size factor in two females from Salta province, 
Argentina (Table 3). Previous studies suggest that the 
reproductive effort is correlated to female size both 
within and between taxa (Crump, 1974; Perotti, 1997; 
Prado & Haddad, 2005). However, D. muelleri females 
showed a high reproductive effort compared to other 
species within or even below its size class (Table 3). 

The high reproductive investment (i.e. ovarian 
complement, reproductive effort and ovarian size factor) 
observed in D. muelleri can also be explained in the 
terms of r-selection (Pianka, 1970), where in a variable 

Species (n) SVL (mm) RE (%) OC OSF Data source

R. marina (5) 132.6 -   8598   97.26 Crump, 1974

H. raniceps (6–34) *   60.2±4.4 11.9±6.0   1991±533 - Prado & Haddad, 2005

P. venulosa (1)   83.2 53 10985 101.33 Perotti, 1994

P. venulosa (3–10) *   77.4±6.0   8.2±1.3   3981±271 - Prado & Haddad, 2005

P. paradoxa (7–17) *   57.5±8.0   5.5±3.1   1834±1 - Prado & Haddad, 2005

C. bassleri (3)   27.3 -     212     7.77 Crump, 1974

C. mehelyi (3)   23.8±0.6 -     217±33 - Prado & Haddad, 2005

C. ventrimaculata (1)   22.0 -     210     9.55 Crump, 1974

D. muelleri (2)   74.2 - 10991 109.68 Perotti, 1997

D. muelleri (9)   65.7±4.2 30.18±3.18 10611±1784 219±24 Present study

E. cf. bicolor (3–13)*   26.1±1.5 18.0±4.5     478±279 - Prado & Haddad, 2005

H. boliviana (2)   42.0 -   1788   42.33 Crump, 1974

L. chaquensis (3)   76.4 20.89 14649 116.21 Perotti, 1994

L. chaquensis (26–50)*   71.3±4.5 16.0±2.9   4936±1720 - Prado & Haddad, 2005

Table 3. Reproductive investment in representatives from four anuran families in the Neotropics: Bufonidae 
(Rhinella marina), Hylidae (Hypsiboas raniceps, Phrynohyas venulosa, Pseudis paradoxa), Microhylidae (Chiasmocleis 
bassleri, C. mehelyi, C. ventrimaculata, Dermatonotus muelleri, Elachistocleis cf. bicolor, Hamptophryne boliviana) 
and Leptodactylidae (Leptodacylus chaquensis). RE: reproductive effort; OC: ovarian complement expressed as the 
total number of mature ovarian ova; OSF: the ovarian size factor. Values are expressed as mean±SD. *Minimum and 
maximum sample sizes used by authors when measuring the variables.  
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and unpredictable environment with mortality not 
depending on the population density and at a low intra- 
and interspecies competition, the selection is directed 
to the production of larger number of smaller offspring. 
Overall, we suggest that the short reproductive lifespan 
justifies the high reproductive investment in D. muelleri 
and this trade-off represents an adaptive response to 
the specific environmental conditions from the Arid 
Chaco.
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