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Tail autotomy is a widespread antipredator strategy among lizards, which consists of the capability of willingly detaching a 
portion of the tail in order to escape predator attacks. Nonetheless, tail autotomy has a number of costs, including reduced 
sprint speed which increases predation risk. However, lizards regenerate the tail following autotomy, although a regenerated 
tail is usually shorter and histologically different from the original tail. In the present work, we assess the effect of tail 
regeneration on sprint speed by comparing Psammodromus algirus lizards with intact and regenerated tails under controlled 
laboratory conditions. We found that sprint speed was similar in lizards with intact and regenerated tails. Therefore, tail 
regeneration following autotomy effectively restored sprint speed, although regenerated tails were shorter than intact ones. 
Thus, regenerating shorter tails could diminish anabolic costs with no negative consequences on flight ability.
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INTRODUCTION

Predation is one of the strongest selective forces on 
prey (Caro, 2005). Predators reduce prey future 

fitness drastically by ending prey’s life (Abrams, 2000). 
Most antipredator strategies are behavioural and/or 
physiological, and are energetically costly (Lima, 1998). 
Moreover, different antipredator strategies often cannot 
be simultaneously enhanced due to energetic trade-offs 
or physical limitations (Witter & Cuthill, 1993; Bourdeau, 
2009).                                                                                           

Because lizards are often victims of predation, they 
use numerous antipredator strategies, mainly relying 
on sprint speed and tail autotomy (Brock et al., 2015). 
Fleeing is considered the most important antipredator 
strategy, since most lizards escape when attacked (Martín 
& López, 2000a; Higham et al., 2013). High sprint speed 
to reach safe refuges increases survival and reproductive 
output, and is thus under strong selection (Husak et al., 
2006; Calsbeek & Irschick, 2007; Irschick & Meyers, 2007; 
Vervust et al., 2007).

Tail autotomy allows lizards to escape predator attacks 
by detaching (a portion of) their tails. The breakage occurs 
at preformed horizontal fracture planes (Sanggaard et 
al., 2012), and is induced by physical contact (Maginnis, 
2006). While high predation pressure selects more brittle 
tails in lizards (Cooper et al., 2004), tail autotomy is not 
devoid of costs. Besides compromising the immune 
system and fat storage (Chapple & Swain, 2002; Kuo et al., 

2013), tailless lizards experience impaired mobility and 
sprint speed since tails stabilise locomotion (Ballinger, 
1973; Gillis et al., 2009; Cromie & Chapple, 2012). Sprint 
speed is vital for antipredator strategies of most lizards 
(Gifford et al., 2008; Bateman & Fleming, 2009), and tail 
autotomy negatively affects home range area (Salvador 
et al., 1994), foraging ability (Martín & Salvador, 1993a), 
social dominance (Fox et al., 1990), mating success (Dial 
& Fitzpatrick, 1981; Martín & Salvador, 1993b), and 
ultimately, survival (Fox & McCoy, 2000; Downes & Shine, 
2001). 

Lizards have the ability to regenerate the tissues lost 
as a consequence of autotomy, although regenerated 
tails are usually shorter than intact ones and have 
vertebrae bone tissue replaced with cartilage (Fisher et 
al., 2012; Higham et al., 2013). Tail regeneration is faster 
in larger individuals, who are better  facing the metabolic 
costs (Naya et al., 2007; Marvin, 2011). That lizards invest 
energy in regenerating tails suggests the importance 
of having a complete tail, but the consequences of tail 
regeneration on lizard biology have so far received little 
attention. For example, as far as we know, no study has 
analysed whether regenerated tails allow lizards to run 
as fast as lizards with intact tails. Given that regenerated 
tails are shorter than, and histologically different from, 
intact tails, sprint speed of lizards with regenerated tails 
could be slower than that of lizards with intact tails. 

In the present paper we explore the effect of tail 
regeneration on sprint speed in the lizard Psammodromus 
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algirus. As in many other species, tail autotomy impairs 
their mobility (Martín & Avery, 1998), but whether full 
mobility is recovered in lizards with regenerated tails is 
unknown. To this end, we compare sprint speed of lizards 
with complete intact tails with lizards with regenerated 
tails, in order to infer whether tail regeneration restores 
sprint speed. 

MATERIALS AND METHODS

Psammodromus algirus is a medium-sized, oviparous, 
generalist lacertid lizard that inhabits shrubby areas in 
south-western Europe and north-western Africa from the 
sea level to above 2600 m.a.s.l. (Salvador, 2011). Lizards 
can either use a sit-and-wait or, more frequently, an 
active search strategy, to prey on diverse invertebrates, 
usually not far from the bushes they use as shelters from 
potential predators (Salvador, 2011). Psammodromus 
algirus has a tail length which more than twice exceeds 
the snout-vent length (SVL), making it particularly 
susceptible to impaired sprint speed as a consequence 
of tail autotomy (McElroy & Bergmann, 2013).

We captured P. algirus individuals by hand during their 
reproductive season in 2012 (April–July) on the south 
face of the Sierra Nevada (SE Spain) from six populations 
at 300, 700, 1200, 1700, 2200, and 2500 m.a.s.l. as 
part of a long-term research project, although previous 
studies have shown that sprint speed does not vary with 
elevation (Zamora-Camacho et al., 2014). Since habitat 
characteristics can have an effect on escape behaviour 
(Martín & López, 1995; Iraeta et al., 2010), we selected 
plots as similar as possible in vegetation structure (see 
Appendix A in Zamora-Camacho et al., 2013). 

Captured lizards were transported to the laboratory 
in individual cotton bags. We considered three 
reproductive conditions: males, gravid females and 
non-gravid females. Males were identified through their 
wider heads, orange spots in the commissures of their 
mouths, and more abundant and prominent femoral 
pores. Gravid females evidenced developing eggs by 
manual abdomen palpation. We categorized three tail 
states: intact, if tail showed no damage; incomplete, if 
tail had been autotomised and new tissue regeneration 
had not started or was in progress; and regenerated, if 
tail had been broken but a new tail had been completely 
restored. We could recognise regenerated tails because 

breakage points remain visible, and tissue morphology 
and colouration which clearly differ from intact tails 
(Fisher et al., 2012). We discarded lizards with an 
incomplete or growing tail. The group with regenerated 
tails only included individuals that had lost at least 75% of 
their original tail length as compared with average intact 
tails in the species. In all cases, we measured SVL, hind-
limb length (since it is particularly involved in this lizards’ 
sprint speed; Bauwens et al., 1995; Zamora-Camacho et 
al., 2014), and tail length with a millimetre-marked ruler, 
as well as body mass with a balance (model CDS-100, 
precision 0.01 g). Lizards were marked by toe clipping as 
part of a long-term research project, avoiding the fourth 
toe in the hind limbs since it could play a particular role 
in lizard mobility; toe clipping has been proven not to 
affect lizard sprint performance (Huey et al., 1990; Dodd, 
1993; Husak, 2006). During their captivity, lizards were 
kept in individual terraria (20 x 13 x 9 cm) nearby to a 
window allowing lizards to maintain natural circadian 
rhythms, and a heat cable activated during daytime to 
facilitate thermoregulation. Lizards were fed ad libitum 
with mealworm (Tenebrio molitor) larvae and nutritious 
aqueous gel as a water source. After the experiments, 
we released lizards in the same location where they were 
captured. No lizard suffered any damage or died as a 
consequence of this study.

Two days after capture, lizards ran in a wooden, linear 
raceway (320 x 20 x 40 cm), whose bottom was lined with 
artificial cork to provide a traction surface (Bauwens et 
al., 1995). The bottom of the raceway was divided into 
25 cm stretches delimited by transversal marks, since 
this is the distance that lizards approximately run to 
reach their natural refuges (Martín & López, 2000b). At 
the end of the raceway, a dark background simulated a 
shelter. Whenever lizards stopped running, a researcher 
chased them in order to stimulate the run. Each lizard 
ran three consecutive trials since they exhibited no sign 
of fatigue, and trials were performed individually. Sprint 
performance is temperature-sensitive in ectotherms 
(Pérez-Tris et al., 2004; Iraeta et al., 2010), and individuals 
were trialled at a body temperature of 32°C, which is 
within the species’ thermal preference (Díaz & Cabezas-
Díaz, 2004) and achieved by 10 minutes in an incubator 
and measured by inserting a thermocouple (1mm 
diameter) connected to a thermometer (Hibok18; 0.1°C 
precision) 8 mm inside the cloaca. Runs were videotaped 

Table 1. Linear Mixed Models testing the effects of tail state, reproductive condition, and their interaction on body mass, 
snout-vent length, hind-limb length, and tail length in Psammodromus algirus. Population of origin was introduced as 
random factor. Values are F-values. Degrees of freedom (df) are shown for each model. Significant results are in italic. 
Symbols indicate: ns for non-significant; § for marginally non-significant (0.05<p<0.10); * for p<0.05; *** for p<0.001. 

Variable Tail state Reproductive condition Tail state * Reproductive 
condition

df 1, 63 2, 63 2, 63

Body mass 0.516ns 13.859*** 0.743ns

Snout-vent length 0.597ns 4.900 § 1.351ns

Hind-limb length 0.003ns 23.516*** 4.082ns

Tail length 37.878*** 6.685* 0.658ns
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with a Canon EOS 550D camera. We calculated the time 
that each lizard spent in covering each stretch with the 
software Movavi v. 11 (Chen et al., 2003) to the nearest 
ms, obtaining the speed each lizard developed in each 
stretch. Maximum sprint speed was defined as the speed 
in each lizard’s fastest stretch. Clutch size or days until 
oviposition have no effect on gravid female sprint speed 
(Zamora-Camacho et al., 2014).

Since data met the criteria of residual homoscedasticity 
and normality, we performed parametric statistics 
(Quinn & Keough, 2002). Several Linear Mixed Models 
of Restricted Maximum Likelihood (REML-LMM) were 
performed, including population of origin as a random 
factor (Zuur et al., 2009). This way, we tested the effect 
of tail state, reproductive condition, and their interaction 
on morphological variables: body mass, SVL, hind-limb 
length, and tail length. Moreover, we tested the effect of 
tail length (the only morphological variable affected by 
tail state), tail state, and reproductive condition on sprint 
speed. The effects of predictors were examined with sum 
of squares type III. Statistical analyses were conducted 
with the software R v. 3.1.1 (R Core Development Team 
2014). Raw data are provided in the Online Appendix.

RESULTS

Body mass, SVL, and hind-limb length did not differ 
between lizards with intact and regenerated tails (Tables 
1 and 2), but regenerated tails were significantly shorter 
than intact tails (Tables 1 and 2). Tail state*reproductive 
condition interaction was not significant (Table 1). On the 
other hand, we found morphological differences among 
reproductive conditions (male tail and hind-limb lengths 
were higher, while gravid females were heavier; Table 

1). Nevertheless, reproductive condition had no effect 
on sprint speed (Table 3). Sprint speed was not affected 
by tail length nor tail state (sprint speed of intact-tailed 
lizards mean±SE=141.81±11.67cm/s, n=50; sprint speed 
of regenerated-tailed lizards mean±SE=197.43±28.62 
cm/s, n=19; Table 3). When interactions (none of which 
significant; Table 3) were removed from the model, all 
effects remained non-significant (data not shown).

DISCUSSION

Tail autotomy is a common antipredator strategy among 
lizards, and involves the capability of shedding a portion 
of the tail in order to escape a potential predator attack 
(Lima & Dill, 1990). Nonetheless, tail autotomy has a 
number of costs (reviewed in Bateman & Fleming, 2009), 
including reduced speed sprint which facilitates a further 
capital antipredator defence in lizards (Gifford et al., 
2008; Cooper & Smith, 2009). Lizards regenerate lost tails 
at energetic costs (Maginnis, 2006; Naya et al., 2007). 
Tails are fundamental for mobility (Ballinger, 1973), 
but it is unknown whether lizards with regenerated 
tails achieve a sprint speed similar to lizards with intact 
tails. Our findings suggest that tail regeneration restores 
sprint speed, although our results do not include data 
on individual speed prior to tail loss. As victims of a 
predator attack, individuals with regenerated tails could 
be characterised by slower sprint speed than individuals 
with an intact tail. In such a scenario we would expect 
them to be slower also after tail regeneration, which 
is not supported by our data. Tail loss may also be 
a consequence of intraspecific agonistic encounters 
(Jennings & Thompson, 1999). 

Table 3. Linear Mixed Models testing the effects of tail length, tail state, reproductive condition, and their interactions 
on sprint speed in Psammodromus algirus. df: degrees of freedom. Population was included in the models as random 
factor. Sum of squares was type III.

Variable df F-statistic p-value

Tail length 1, 57 0.655 0.418

Tail state 1, 57 0.003 0.954

Reproductive condition 2, 57 1.298 0.523

Tail length * Tail state 1, 57 0.032 0.859

Tail length * Reproductive condition 2, 57 1.102 0.576

Tail state * Reproductive condition 2, 57 0.471 0.790

Tail length * Tail state * Reproductive condition 2, 57 0.309 0.857

Table 2. Average values±standard error (SE) of biometric variables analysed in Table 1, compared between 
Psammodromus algirus with intact and regenerated tails. 

Variable Intact tailed lizards
(n=50)

Mean±SE

Regenerated-tailed lizards
(n=19)

Mean±SE

Body mass (g) 7.61±0.33 8.46±0.54

Snout-vent length (mm) 66.90±0.89 70.00±1.44

Hind-limb length (mm) 35.09±0.33 35.98±0.53

Tail length (mm) 158.16±2.20 118.16±3.57
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The reduction in sprint speed following tail autotomy 
can make lizards more prone to be preyed upon (Downes 
& Shine, 2001; Calsbeek, 2008). Tailless lizards may lack 
mechanisms to metabolically compensate the costs of tail 
loss (Sun et al., 2009), or to efficiently shift antipredator 
behaviour (Kelehear & Webb, 2006). For example, tailless 
Anolis carolinensis are unable to improve in-air stability 
during escape leaps in repeated trials, suggesting that 
they cannot learn to jump efficiently without a tail 
(Kuo et al., 2012). Moreover, some autotomised lizards 
exhibit a more cautious behaviour including reduced 
feeding (Cooper, 2003). Our results show that P. algirus 
with regenerated tails were not slower than those with 
intact tails, whilst tailless individuals of this species are 
slower (Martín & Avery, 1998; for other species see 
also Brown et al., 1995; Gillis et al., 2009). Therefore, 
sprint speed retrieval could be one reason why energy 
investment in tail regeneration outweighs its costs (Naya 
et al., 2007). Tail regeneration improves sprint speed 
by the recovery of the stabilising role of the tail during 
locomotion (Ballinger et al., 1979). Tailless leopard geckos 
(Eublepharis macularius) experience a displacement 
of the centre of mass and the relative position of the 
hindlimb joint angle, but return to their original position 
after tail regeneration (Jagnandan et al., 2014). 

We also found that regenerated tails were significantly 
shorter than intact tails, however with no effect on sprint 
speed. Regeneration of shorter tails could require a lower 
energy investment (Naya et al., 2007), allowing lizards to 
divert energy to other life-history traits which enhance 
the ability to flee from predators. The proportion of 
the tail lost is related to the cost of tail loss (Sun et al., 
2009; Cromie & Chapple, 2013), and specific thresholds 
exist for effects on locomotory speed (Marvin, 2013). 
Therefore, fully intact tails are not needed for optimal 
locomotor performance. The specific length of intact 
tails could also be advantageous for attracting predator 
attention towards a detachable body part (Dial, 1986). 
In conclusion, tail regeneration following autotomy 
proved effective in retrieving sprint speed in P. algirus. 
Regenerating shorter tails could diminish regeneration 
costs with no negative consequences on sprint speed and, 
thus, on capability of fleeing from potential predators. 
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