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It is well known that geographic variation in morphological traits occurs among populations of lizard species. In this study, we

analysed body size and sexual size dimorphism among four populations of the lizard Sceloporus variabilis from contrasting

elevations. Males from all populations were larger than females in snout-vent length, head length, head width, tibia length,
and forearm length. These findings are consistent with the hypothesis that sexual selection acts more strongly on males than
on females. Females from higher elevations were larger in size than those found at lower elevations, which could be explained
by an increased investment in body size to maximise reproductive success. We suggest that environmental (precipitation,
temperature) and ecological (food, competition, predation) factors influence the expression of sexual dimorphism and

morphological variation in S. variabilis.
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INTRODUCTION

range of ecogeographical rules governing the size of

males and females have been developed to explain
geographic variation among species and populations
(Cox et al., 2003; Sch&uble, 2004). In amphibians and
fishes, females are generally the larger sex (Liao et al.,
2013; Jonsson & Jonsson, 2015), while in mammals,
birds, and reptiles, males tend to be larger (Kratochvil
& Frynta, 2006). Sexual dimorphism can be observed
in a wide range of morphological traits, such as body
size, head length and limbs length (Darwin, 1871; Polak
& Frynta, 2010), and can be related to environmental
gradients such as altitude and latitude, and the use and
availability of resources such as microhabitats and food
(Madsen & Shine, 1993; Roitberg, 2007; Ramirez-Bautista
et al., 2014). In general terms, Bergmann’s rule predicts
that body size increases with latitude (Blackburn et al.,
1999), and Rensch’s rule establishes that sexual-size
dimorphism increases with latitude when males are the
larger sex, decreasing when females are larger (Abouheif
& Fairbairn, 1997). In reptiles such as lizards, Bergmann’s
rule has been tested in a large number of taxa, whereas
fewer case studies exist for Rensch’s rule (Angilletta et
al., 2004; Cruz et al., 2005; Kratochvil & Frynta, 2006; Cox
et al., 2007).

Lizards can exhibit high variation in sexual size
dimorphism, which has been reported as male-biased
(e.g., Tropiduridae, Teiidae: Brandt & Navas, 2013),
female-biased (e.g., Pygopodidae, Diplodactylidae:
Read, 1999; Cox et al., 2009), and absent (e.g., Anguidae,

Gekkonidae, Scincidae: Cox et al., 2009). Male-biased
dimorphism is generally linked to sexual selection,
with large males being an advantage during male-male
competition forterritories and access tofemales, whereas
female-biased dimorphism can be explained by higher
fecundity of larger females (Endler & Houde, 1995; Brafia,
1996; Cox et al., 2009). Sexual size dimorphism in lizards
can further arise from intraspecific niche divergence,
enabling each sex to use different resources such as
food and microhabitats (Rand, 1967; Schoener, 1967;
Cox et al., 2003; Hierlihy et al., 2013). Size dimorphism
is also influenced by the environment and is for example
evidenced by oviparous species, for which females are
generally larger at higher latitudes or altitudes, leading to
larger clutches with bigger eggs compared to females at
lower latitudes or altitudes (Forsman & Shine, 1995; Du
et al., 2005).

Sexual-size dimorphism has been assessed in a range
of lizard taxa (e.g. Brafia, 1996; Ramirez-Bautista et al.,
2006; Cox et al., 2007; Aguilar-Moreno et al., 2010;
Hierlihy et al., 2013), including comparisons between
populations within species (Hernandez-Salinas et al.,
2010; Jin et al., 2013; Ramirez-Bautista et al., 2014).
The genus Sceloporus (Phrynosomatidae) currently
comprises almost 100 species, occurring in a wide range
of habitats and largely being characterised by a marked
male-biased sexual-size dimorphism in line with male-
male competition (Fitch, 1978; Ansell et al., 2014; Leaché
et al., 2016). Differences in sexual size dimorphism
among Sceloporus species can be attributed to habitat
differences, variation in predation pressure, and lack of
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territoriality or interspecific competition (Wiens, 1999;
2001), and can also be reflected in differential head
length, head width, forearm length and tibia length
between the sexes (Ramirez-Bautista & Pavon, 2009;
Ramirez-Bautista et al., 2013).

Sceloporus variabilis shows a wide geographic
distribution across tropical and temperate regions
(Mendoza-Quijano et al., 1998), but little is presently
known about morphological variation between and
among populations. Previous evidence from local
studies suggests a male-biased sexual-size dimorphism
(Benabib, 1994; Ramirez-Bautista et al., 2006), but data
from different environments are as yet lacking. Thus,
the aim of the present study is to quantify body size and
sexual-size dimorphism in four populations S. variabilis
from different elevations (see also Ramirez-Bautista et
al., 2011).

MATERIAL AND METHODS

Specimens were obtained from the Coleccién Nacional de
Anfibios y Reptiles (CNAR) del Instituto de Biologia, and
Coleccion del Museo de Zoologia, Facultad de Ciencias
(MZFC), both at the Universidad Nacional Auténoma
de México (UNAM). Additional data were obtained
from a database held by the Laboratorio de Ecologia de
Poblaciones of the Universidad Auténoma del Estado de
Hidalgo. The populations at high elevation were located
at Cerro Azul, Veracruz (97° 44°'N, 21° 11°0; 1, 100 m
a.s.l., Table 1, Fig. 1) and Metztitlan, Hidalgo (98° 55°N,
20° 38°0; WGS84; 1, 000 m a.s.l., Table 1, Fig. 1). The
low elevation localities were at Atlapexco, Hidalgo (98°
20°N, 21°01°0; 140 m a.s.l., Table 1, Fig. 1) and Alvarado,
Veracruz (95° 46°N, 18°47°0; 50 m a.s.l., Table 1, Fig. 1;
INEGI, 2009).

All specimens were collected between 1986 and 2014.
In the absence of statistical variation in morphological
characteristics between years within populations (P >
0.05 in all cases, detailed data not shown), the samples
of all years were pooled for each population. Sample
sizes were 55 specimens (Cerro Azul; 20 females and 35
males), 116 (Metztitlan; 23 females and 93 males), 47
(Atlapexco; 25 females and 22 males), and 355 (Alvarado;
131 females and 224 males).

Table 1. Environmental parameters for each of the
four localities sampled for sexual-size dimorphism of
S. variabilis.

Populations
Environmental Cerro Azul, Metztitlan, Atlapexco, Alvarado,
characteristic =~ Veracruz Hidalgo Hidalgo  Veracruz
Elevation (m) 1100 1000 140 50
Vegetation type  Secondary  Xeric scrub Tropical Evergreen
vegetation/ rain forest forest
Coniferous
forest
Average annual 1600 700 2000 3435-
precipitation 6435
(mm)
Mean annual 22 18.5 20-22 27
temperature
("C)
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Figure 1. Populations at high (Cerro Azul, Veracruz;
Metztitlan, Hidalgo) and low elevations (Atlapexco,
Hidalgo; Alvarado, Veracruz) of S. variabilis analysed in
this study.

Males were considered as adults if they had enlarged
testes and convoluted epididymides consistent with
sperm production. Adult females were defined by
having vitellogenic follicles in ovaries, or eggs in oviducts
(following Goldberg & Lowe, 1966). We measured snout-
vent length (SVL: measured to the nearest + 0.01 mm),
head length (HL: £ 0.01 mm; distance from the anterior
tip of the rostral scale to the posterior margin of the left
ear), head width (HW: £ 0.01 mm; maximum width of the
head, measured as the distance between the posterior
margin of the left and right ears), tibia length (TL: £ 0.01
mm), and forearm length (FL: £ 0.01 mm; measured from
the knee (TL) or elbow (FL) to the pad of the foot) in all
specimens examined.

For statistical analyses on sexual-size dimorphism,
we used a multivariate analysis of variance (MANOVA)
to identify differences in body size (SVL) and other
morphological characteristics as a function of population
origin (Zar, 1999). A Generalized Discriminant Function
Analysis (GDFA) was performed at the sex and population
level to test for differences between sexes and among
populations. Significant variables identified by GDFA
were compared between sexes and among populations
by univariate Kruskall-Wallis or U Mann-Whitney tests.
A correlation analysis was conducted to determine the
relationship between morphological traits and elevation.
Statistical analyses and post-hoc comparisons were
performed when necessary using Statistica version 7.0,
and means were presented + 1 SE (Zar, 1999).

RESULTS

A MANOVA including all traits showed statistically
significant differences between sexes (Wilk’s A = 0.704,
Fses = 47.15, P < 0.001), among populations (Wilk’s A
=0.582, FS' o5 = 22.37, P < 0.001), and in the interaction
of both factors (Wilk’s A = 0.872, Fy g5 =523, P< 0.001).
The same pattern occurred in other morphological
characteristics, where males were larger than females

(Tables 2 and 3). The degree of sexual size dimorphism
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Table 2. Mean values (+ 1 SE) of morphological characteristics (SVL = snout-vent length, HL = head length, HW = head width, FL = forearm length, and TL = tibia length) of adult males
and females of S. variabilis from populations at Veracruz (Alvarado and Cerro Azul), and Hidalgo, Mexico (Atlapexco and Metztitlan). Results of Kruskal-Wallis, testing differences by sex
among populations.

Trait Males Females
Alvarado Atlapexco Metztitlan Cerro Azul H P Alvarado Atlapexco Metztitlan Cerro Azul H P
(n=224) (n=22) (n=93) (n=35) (n=131) (n=25) (n=23) (n=20)
SVL (mm) 59.95 +0.37 65.6 +1.64 62.20 £0.70 63.1+1.37 39.86 <0.0001 50.92 £0.36 54.10 £ 0.94 57.89+£1.38 54.35+0.97 35.86 <0.0001
(44.5-71) (46.49-74.82) (44-77.9) (43-75) (41.7-68.4) (45-66) (38.5-69.2) (48-62)
HL (mm) 15.34+0.08 16.30+0.34 15.70 £ 0.15 16.16 + 0.43 25.26 <0.0001 13.07 £ 0.08 13.81+0.21 14.77 £0.30 14.23 +0.21 45.84 <0.0001
(10.8-18) (12.7-18.39) (11.3-18.72) (8.4-19.5) (10.5-16.7) (12.2-16.7) (10.79-17.62) (12.8-15.7)
HW (mm) 10.70 £ 0.08 11.56+0.48 11.25+0.15 12.8240.34 4154  <0.0001  9.05+0.09 9.44 +0.31 8.52£0.30 10.53+0.20  33.71  <0.0001
(7.2-14.5) (7.66-14.95) (7.75-14.7) (8.5-17.7) (6-13) (6.44-12.5) (6.29-11.8) (9.2-12.5)
FL (mm) 10.17 £ 0.07 11.45+0.27 10.69+0.11 10.01+0.26 42.14 <0.0001 8.51+0.08 9.44 +0.18 9.37+0.22 8.48 +0.19 30.97 <0.0001
(7-13.5) (8.91-13.05) (7.4-12.59) (6.4-13.5) (5.8-11.4) (7.8-11.2) (7-11.29) (7-9.9)
TL (mm) 15.13 +0.09 17.22 +0.38 15.13+0.14 16.09 + 0.44 37.81 <0.0001 12.84 +0.08 13.82+0.26 13.90 +0.38 13.54+0.20 30.58 <0.0001
(10.2-18.4) (13.2-20.05) (11-19.41) (7.5-19.2) (10.6-17.6) (11.8-16.9) (10-17.74) (12.3-16)

Table 3. Mean values (+ 1 SE) of morphological characteristics (SVL = snout-vent length, HL = head length, HW = head width, FL = forearm length, and TL = tibia length) of adult males and
females of S. variabilis from populations at Veracruz (Alvarado and Cerro Azul), and Hidalgo (Atlapexco and Metztitlan), Mexico. * = P < 0.01, the rest was P < 0.001, by U Mann-Whitney
test.

Trait Alvarado Altapexco Metztitlan Cerro Azul
Males (n=224) Females (n=131) Males (n=22) Females (n=25) Males (n=93) Females (n=23) Males (n=35) Females (n=20)
SVL (mm) 59.95+0.37 50.92 £0.36 65.6 +1.64 54.10 £ 0.94 62.20£0.70 57.89+£1.38 63.1+1.37 54.35+0.97
(44.5-71) (41.7-68.4) (46.49-74.82) (45-66) (44-77.9) (38.5-69.2)* (43-75) (48-62)
HL (mm) 15.34 £ 0.08 13.07 £ 0.08 16.30+0.34 13.81+0.21 15.70 £ 0.15 14.77 £0.30 16.16 +0.43 14.23 +£0.21
(10.8-18) (10.5-16.7) (12.7-18.39) (12.2-16.7) (11.3-18.72) (10.79-17.62) (8.4-19.5) (12.8-15.7)
HW (mm) 10.70 £ 0.08 9.05+0.09 11.56 £ 0.48 9.44 +0.31 11.25+0.15 8.52+0.30 12.82+0.34 10.53 +0.20
(7.2-14.5) (6-13) (7.66-14.95) (6.44-12.5)* (7.75-14.7) (6.29-11.8) (8.5-17.7) (9.2-12.5)
FL (mm) 10.17 £ 0.07 8.51+0.08 11.45+0.27 9.44 +0.18 10.69 £0.11 9.37+0.22 10.01 £ 0.26 8.48 £0.19
(7-13.5) (5.8-11.4) (8.91-13.05) (7.8-11.2) (7.4-12.59) (7-11.29) (6.4-13.5) (7-9.9)
TL (mm) 15.13+0.09 12.84 +0.08 17.22 £0.38 13.82+0.26 15.13+0.14 13.90+0.38 16.09 + 0.44 13.54+0.20
(10.2-18.4) (10.6-17.6) (13.2-20.05) (11.8-16.9) (11-19.41) (10-17.74) (7.5-19.2) (12.3-16)
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varied among populations. Males were 17.53%, 15.06%,
13.87%, and 6.93% larger than females in Atlapexco,
Alvarado, Cerro Azul, and Metztitlan, respectively. In
females, SVL (r=0.39, P<0.001), HL (r =0.45, P < 0.001),
HW (r = 0.14, P = 0.05), and TL increased significantly
with altitude (r = 0.27, P < 0.001), whereas FL did not (r
=0.12, P =0.08). Males showed a similar pattern for SVL
(r=0.15,P=0.002), HL (r =0.13, P =0.009), and HW (r =
0.29, P <0.001), but not for FL (r = 0.09, P = 0.08) and TL
(r=0.04, P =0.40).

The GDFA showed that three out of the five traits
were different between sexes, with an eigenvalue of
F1 = 0.73 (cumulative percentage 100%): HL (Wilk’'s A =
0.982, F, ., =9.79, P < 0.001), HW (Wilk’s A = 0.974, F
ses= 14.79, P < 0.001), and TL (Wilk’s A = 0.97, F ., =
17.43, P < 0.001). All traits differed among populations
(SVL, Wilk’s A =0.98, F, ., = 2.78, P = 0.040; HL, Wilk’s A
=0.97,F, ., =4.26, P = 0.005; HW, Wilk'sA =0.79, F, ..,
= 49.30, P < 0.001; FL, Wilk's A = 0.80, F,  , = 46.27, P <
0.001, and TL, Wilk’s A = 0.92, F, ., = 15.96, P < 0.001),
with eigenvalues of F1 = 0.46 and F2 = 0.11 (cumulative
percentage 86%).

DISCUSSION

Male-biased sexual-size dimorphism has been recorded
in most species of Iguanidae (Fitch, 1978), Tropiduridae
(Brandt & Navas, 2013), and Phrynosomatidae (Valdéz-
Gonzalez & Ramirez-Bautista, 2002; Cox et al., 2007; but
see also Ramirez-Bautista et al., 2013). The pattern of
sexual-size dimorphism found for S. variabilis is largely
consistent with Fitch’s (1978) observations across
the genus Sceloporus, and similar to that observed in
other species (S. ochoterenae: Smith et al., 2003; S.
grammicus: Hernandez-Salinas et al., 2010; S. minor:
Ramirez-Bautista et al., 2014; S. siniferus: Hierlihy et al.,
2013; Ansell et al., 2014), as well as other populations of
S. variabilis (Ramirez-Bautista et al., 2006; Cruz-Elizalde
& Ramirez-Bautista, 2016). The male-biased sexual size
dimorphism observed for S. variabilis is likely governed
by sexual selection which involves male-male aggressive
interactions occurs during courtship and mating (see e.g.
Ruby, 1978; Ruby & Baird, 1994 for S. jarrovi). Larger
males with larger relative heads are favoured during
male-male combats, resulting in higher reproduction
success and the acquisition of more resources (Stamps,
1983; Carothers, 1984; Hierlihy et al., 2013). In addition to
sexual size dimorphism, male S. variabilis can also show
brighter colouration patterns than females (Stephenson
& Ramirez-Bautista, 2012; for similar studies on other
Sceloporus species see Feria-Ortiz et al., 2001; Ramirez-
Bautista et al., 2002; Ramirez-Bautista & Pavdn, 2009;
Lozano, 2013). An analysis of differences in coloration in
males from the four studied sites of S. variabilis is still
outstanding.

The observed effect of altitude on size is consistent
with Bergmann’s rule, which states that body size
increases with higher latitude and elevation and
decreasing temperature (e.g., Gaston & Blackburn,
2000). While Bergmann’s rule is largely followed by
mammals and birds, it is not universally applicable to
ectotherm vertebrates such as reptiles (e.g. Ashton
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& Feldman, 2003; Cruz et al., 2005). While to present
study finds evidence in support of a positive relation
between altitude and size traits in males and females,
a higher number of populations is required to draw firm
conclusions (see also Angilletta et al., 2004). Females
from higher elevations were generally larger than
those from lower elevations, similar to what has been
observed in other oviparous lizards (e.g., Michaud &
Echternacht, 1995; Du et al., 2014). In low temperature
environments at high elevations and/or high latitude,
body size can increase more distinctly with elevation and
latitude, because lizards invest more energy in growth
and fat storage during the harshest periods of the year
(Michaud & Echternacht, 1995; Angilletta et al., 2004),
promoting late maturity, larger clutch/litter sizes, bigger
eggs, and larger offspring/neonates at birth (Jin & Liu,
2007; Diaz et al., 2012; Du et al., 2014). A recent study
about reproduction among populations of S. variabilis
in Central Mexico indeed revealed differences in clutch
size and SVL of females in three populations occurring
at different elevations (Cruz-Elizalde & Ramirez-Bautista,
2016). Alternative hypothesis to explain patterns of
sexual size dimorphism are related to the differential use
of resources, and males and females with larger heads
are for example able to ingest larger prey items (Vitt &
Pianka, 2007; Ngo et al., 2015). However, difference in
prey size, microhabitat, or resource competition between
males and females within population do not necessarily
constitute promotors of sexual size dimorphism (Cox &
Kahrl, 2015; see also Schoener, 1967; Butler et al., 2000).

Further studies are needed for a better understanding
of geographic patterns of sexual size dimorphism in S.
variabilis, focusing on the use of resources between sexes,
population dynamics, and male coloration. Additionally,
differences in body size and sexual-size dimorphism
should be assessed between species of the S. variabilis
group, as traits such as male territoriality, clutch size,
and body size in some cases fail to explain geographic
variation in morphology within and among species (Cox
etal., 2003; Frydlova & Frynta, 2010; Ramirez-Bautista et
al., 2013; Cox & Kahrl, 2015).
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