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IntroductIon

Biodiversity is dramatically affected by human activities 
leading to an alteration of ecosystems (Chapin et al., 

2000; Myers & Knoll, 2001; Brooks et al., 2002).  Human 
activities, such as intensive farming, generate habitat 
alteration, fragmentation and simplification (e.g. Maron 
& Fitzsimons, 2007).  In addition, agricultural landscapes 
often suffer from the massive use of pesticides, which 
contaminate the environment and the wildlife (Schäfer 
et al., 2007). 
 As a consequence, these modern agricultural practices 
can have detrimental impacts on fauna and flora (Myers 
& Knoll, 2001; Brooks et al., 2002; Fahrig, 2003; Relyea, 
2009).  In order to persist in these altered habitats, 
wildlife must adjust to these ongoing changes.  However, 
the ability of a species to persist in agriculture landscapes 
can be jeopardised when critical elements necessary to 

perform its life-cycle are missing in the environment.  For 
example, the lack of trees or shrubs can impair the ability 
of some bird species to breed in simplified landscapes 
(Newton, 1994; Verhulst et al., 2004).   Similarly, amphibian 
populations will disappear if suitable breeding ponds are 
missing following habitat simplification (Smith & Green, 
2005).  In addition to habitat alteration, other effects can 
be linked to the increasing use of chemical inputs that 
aim to improve crop productivity in agricultural habitats 
(McLaughlin & Minneau, 1995; Köhler & Triebskorn, 
2013).  For instance, pesticides are used to control pests 
(e.g., weeds, insect, fungi) that negatively impact crop 
productivity.  These pesticides can have toxic effects on 
non-target components.  For example, they have been 
shown to negatively impact reproduction in wildlife 
species, through various mechanisms that spans from 
direct toxic or sublethal effects (Mnif et al., 2011; 
Cheron & Brischoux, 2020) to alterations of ecosystem 
functioning (e.g., disruption of the food web, Relyea & 
Hoverman, 2008).
 The direct effects of habitat alteration on population 
persistence are relatively easy to assess (see above).  Yet, 
assessments of indirect effects of agricultural practices 
on population persistence are more challenging and 
require population monitoring in multiple sites that 
vary in their habitat structure (i.e., degree of alteration 
and fragmentation).  To document these effects, simple 
naturalist observations can be important because they 
often help to reveal major ongoing and detrimental 
events that affect wild populations (Sagarin & Pauchard, 
2010; Sagarin & Pauchard, 2012; Mauz & Granjou, 2013).  
 During the course of a study that aimed to compare 
toad (Bufo spinosus) populations between forested 
(preserved) areas and agricultural (simplified) habitats, 
we opportunistically quantified breeding parameters 
(number of males, presence of amplexus, egg strings and 
tadpoles) in both types of habitat in Western France (Fig.  
1).  The toad (Bufo spinosus) is a widespread species that 
can live in a variety of habitats and has been previously 
shown to persist even in highly modified agricultural 
areas (Arntzen et al., 2014, Guillot et al., 2016).  As in 
most anuran species, B. spinosus have a biphasic life-
cycle with an extensive use of terrestrial habitats during 

https://doi.org/10.33256/31.4.197200

Anthropogenic alterations of habitats can have 
detrimental consequences for biodiversity.  Documenting 
these effects require monitoring in multiple sites that 
vary in the degree of alterations over long temporal 
scales, a task that is challenging.  Yet, simple naturalist 
observations can reveal major ongoing events affecting 
wild populations, and serve as a basis for further 
investigations.  We quantified breeding parameters of 
spined toad (Bufo spinosus) populations from forested 
(preserved) and agricultural (altered) habitats.  We found 
that reproduction did not occur at the sites surrounded 
by agriculture, while it occurred successfully in ponds 
from forests.  Males were present at all sites, but females, 
amplexus, egg strings and tadpoles remained absent 
from agricultural sites.  Observations made at the same 
sites indicated that breeding occurred during previous 
years.  Our observations of habitat- and sex-specific lack 
of reproduction may have critical consequences for the 
persistence of populations of a widespread amphibian 
species in agricultural areas.

Keywords: Amphibian, Bufo spinosus, breeding, 
conservation, reproductive success
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most of the year, and a short breeding season (~1 month) 
in aquatic sites (ponds) where mating occurs and eggs 
and tadpoles develop (Reading, 1998; Kelleher et al., 
2018; Brischoux & Cheron, 2019).  The breeding season 
occurs at the end of winter (February – March).  During 
this period, male toads migrate towards aquatic breeding 
sites where they wait for females (Reading, 1998).  Males 
can remain at the breeding site for several weeks, while 
females leave shortly after mating and egg-laying (Davies 
& Halliday, 1977).  Eggs and tadpoles develop over three 
to four months before metamorphosis and subsequent 
dispersal in nearby terrestrial habitats. Reproductive 
events can be easily assessed later in the season (when 
breeders have left the breeding site) by monitoring the 
presence of egg strings and tadpoles.
 The terrestrial part of the annual cycle of toads 
occurs in various environments usually within one km 
from the breeding pond (Janin et al., 2011; Guillot et al., 
2016).   Two of our study sites were located in forested 
areas where forest cover represented > 95 % within 
a circle of a one km radius centered on the breeding 
pond; while three sites were located in agricultural areas 
(composed mainly of large fields) where forest cover 
was always < 35 % within the same surface area (Fig. 
1).  Forest and agricultural sites were situated in close 
proximity (maximum distance 12 km) in order to avoid 
diverging climatic conditions that may affect timing of 
reproduction.
   Observations were made from early January (week 

one) to late June (week 26) 2020.  At the onset of the 
reproductive period (from week one to week 11) all 
study sites were monitored every night.  Observations 
were stopped from week 12 to week 16 because 
of the lockdown linked to the COVID-19 pandemic.   
Observations resumed on week 17 on a monthly basis 
until late June (week 26) in order to assess the presence 
of developing tadpoles.
 Due to of the diverging reproductive behaviour of 
males and females (see above), we made the following 
observations.  Males were individually counted when 
abundances were < 10 individuals and number of 
individuals was approximated by increment of 10 
individuals when abundances were > 10 individuals.  
Females remain only briefly at the breeding pond, and 
amplexus occurs in areas where precise quantification is 
precluded (in highly vegetated areas or deeper water).  
As a consequence, we assessed female presence through 
the observation of amplexus and qualified for each site 
whether amplexus was observed of not (present/absent).  
When reproduction occurred, large numbers of egg 
strings and tadpoles precluded direct enumeration and 
successful reproduction was assessed with the presence/
absence of egg strings and tadpoles. 
 We emphasise that our opportunistic observations 
are qualitative rather than quantitative for most 
parameters recorded as they were not directly linked 
to the primary goal of the surveys we performed 
(assessment of reproductive success across habitats). 

Figure 1.  A-D: Aerial pictures (Google Earth) of the five study sites with the one km radius surrounding breeding ponds 
used to illustrate the contrast between three agricultural sites (A, B and C) and two forested sites (D and E).  Letters in the 
pictures relate to site numbers in Table 1.  F: Picture of an individual Bufo spinosus in the field in South Deux-Sèvres, France .
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1) and their reproductive success (assessed through the 
presence of egg strings and developing tadpoles, Table 
1).  Amplexus was observed on very few nights (one 
or two nights) at two of the agricultural sites, and was 
not observed at the other agricultural site.  Conversely, 
amplectant pairs were observed steadily almost every 
night over six weeks at the sites surrounded by forest.  
No egg-strings or developing tadpole were observed 
at all three sites from agricultural habitats, while egg 
strings and developing tadpoles were present at the two 
forest sites.  Importantly, these observations suggest that 
females did not migrate to breed in sites surrounded by 
agricultural areas and, thus, that habitat-specific and sex-
specific responses to habitat perturbations occurred in 
adult females. 
 It is important to stress that our observations are 
unreplicated and preliminary and that we have not 
observed this phenomenon in previous years.   Therefore, 
these observations do not give any strong clue regarding 
the mechanisms through which habitat-specific and 
probably sex-specific lack of reproduction has occurred.  
Yet, previous observations made at the same study 
sites (Guillot et al., 2016; MC and FB unpublished data) 
indicate that breeding successfully occurred at some of 
these agricultural sites at least in 2015 and in 2019; 2 
years during which we monitored reproduction at some 
of those sites and for which egg strings and developing 

Observations are summarised in Table 1.  Overall, we 
found that reproduction did not occur at the three sites 
from agricultural habitats, while it occurred successfully 
in breeding ponds from forested areas (presence of egg 
strings and tadpoles, Table 1).  
 At all of our study sites, breeding males were present, 
yet with variable abundances (Table 1).   Mean number of 
adult males was 19.0±28.4 (range 0-100) for agricultural 
sites and 15.6±8.3 (range 0-30) for forest sites (Table 1).  
These numbers suggest that abundances of reproductive 
males did not seem to be related to the surrounding 
habitat structures.  Indeed, some sites from agricultural 
areas displayed numbers of males that equaled or 
even exceeded those from forested habitats (Table 1).  
Importantly, the onset of the reproductive period (first 
observations of males occurring at the study sites) was 
similar between habitat types (occurring on week 5, 
Table 1), suggesting that climatic (micro-) conditions 
did not significantly influence reproduction between 
sites.  These observations tend to further indicate that 
the lack of reproduction we recorded (see below) may 
not be linked to a lack of breeding males (although one 
agricultural site was characterised by lower abundances, 
Table 1), but rather to a lack of reproductive females.
 Indeed, the most clear-cut difference between 
our study sites was linked to the presence of females 
(assessed through the presence of visible amplexus, Table 

Unusual  lack  of  reproduct ion in  toad populat ion

Table 1.  Summary of the data collected during our surveys.  Male abundances show min-max number of individuals 
observed for each week.  Female presence or absence was assessed through observations of amplexus.  The presence of 
egg strings and developing tadpoles was also documented. “ND” stands for “no data”. “NO” refers to absence of individuals 
at periods during which presence was expected, while “-” refers to absence of individuals at periods when absence was 
expected.

Week number
Observations Sites Habitat 1-4 5 6 7 8 9 10 11 12-16 17 21 26
Number of 
males

A Agriculture 0 1-3 1 0 0 0 0 0 ND - - -

B Agriculture 0 40 10-40 3-10 1-3 1 1 0 ND - - -
C Agriculture ND ND ND 100 70 50 50 50 ND - - -
D Forest 0 10-20 20 20 10-20 10-20 10 10 ND - - -
E Forest 0 30 30 20 10-20 20 20 10 ND - - -

Presence of 
amplexus

A Agriculture NO NO NO NO NO NO NO NO ND - - -

B Agriculture NO NO YES YES NO NO NO NO ND - - -
C Agriculture ND ND ND YES NO NO NO NO ND - - -
D Forest NO YES YES YES YES YES YES YES ND - - -
E Forest NO YES YES YES YES YES YES YES ND - - -

Presence of 
egg strings

A Agriculture NO NO NO NO NO NO NO NO ND - - -

B Agriculture NO NO NO NO NO NO NO NO ND - - -
C Agriculture ND ND ND NO NO NO NO NO ND - - -
D Forest NO NO YES YES YES YES YES YES ND - - -
E Forest NO NO YES YES YES YES YES YES ND - - -

Presence of 
tadpoles

A Agriculture - - - - - - - - ND NO NO NO

B Agriculture - - - - - - - - ND NO NO NO
C Agriculture - - - - - - - - ND NO NO NO
D Forest - - - - - - - - ND YES YES NO

E Forest - - - - - - - - ND YES YES NO
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tadpoles were observed.  Although we acknowledge the 
limitations of our observational study, we believe it is 
important to document, at least in a qualitative way, a 
potential problem for the persistence of the populations 
of a widespread amphibian species in agricultural areas 
(Guerry & Hunter, 2002, Boissinot et al., 2019); and we 
urge other researchers to share similar observations.
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Understanding how endangered taxa are distributed 
is a basic prerequisite for conservation planning and, 

in the face of the sixth mass extinction event during Earth’s 
history affecting vertebrates (cf. Ceballos et al., 2020), 
of paramount importance. Ever refined approaches for 
species distribution modelling substantially contribute 
to a better knowledge of the current, past and future 
distribution ranges of chelonians (e.g., Ihlow et al., 
2012; Rödder et al., 2013), one of the most threatened 
vertebrate groups (TTWG, 2017). Recently, Turkozan et 
al. (2021) aimed to clarify the distribution and past range 
dynamics of spur-thighed tortoises (Testudo graeca) 
harbouring different mitochondrial lineages that are 
generally identified as distinct subspecies (TTWG, 2017).  
We appreciate the efforts undertaken by Turkozan et al. 
(2021) but found some misconceptions in their article 
that we highlight in this note.
 Turkozan et al. (2021) used species distribution 
models (SDMs) to predict the ranges of the five eastern 
subspecies of T. graeca. SDMs are frequently applied to 
characterise current realised environmental niches and 
estimate potential geographic distributions of taxa. By 

projecting SDMs onto paleoclimatic or putative future 
conditions, range shifts can be inferred. However, 
predictor variables are extrapolated when projecting 
models through space (whenever the projection area 
is larger than the training range) and time (projecting 
onto future or past climatic conditions; e.g., Elith et al., 
2009, 2010). This requires cautious interpretation of 
modelling results (Elith et al., 2010; Owens et al., 2013). 
Extrapolation effects tend to increase when models are 
trained with geographically restricted data sets (e.g., 
Elith et al., 2010; Rocchini et al., 2011; Engler & Rödder, 
2012; Owens et al., 2013).
 Turkozan et al. (2021) inferred environmental niche 
models for each of the five studied subspecies using ten 
uncorrelated bioclimatic predictors (seven temperature-
related and three precipitation-related variables) and the 
maximum entropy modelling algorithm MaxEnt (Phillips 
et al., 2006; Phillips & Dudík, 2008). Another recent 
study (Javanbakht et al., 2017) examined three of these 
subspecies using n-dimensional hypervolumes based 
on principal components derived from 19 bioclimatic 
variables (cf. Blonder et al., 2014; Blonder, 2018). In 
order to study paleoclimatic range dynamics, both teams 
projected their resulting models onto reconstructions of 
climatic conditions of the mid-Holocene (6,000 BP) and 
the Last Glacial Maximum (LGM, 21,000 BP) but came to 
different conclusions.
 According to Turkozan et al. (2021), the distribution 
ranges of two subspecies (T. g. armeniaca and T. g. buxtoni) 
were almost exclusively shaped by a single precipitation-
related variable, respectively (with permutation 
contributions of 95.8 % and 85 %), while the ranges of T. 
g. ibera and T. g. zarudnyi were predominantly affected 
by a single temperature-related predictor (75 % and 88 
%, respectively).  The distribution of T. g. terrestris was 
inferred to be shaped by precipitation- and temperature-
related predictors. In contrast, Javanbakht et al. (2017) 
found that the distribution of T. g. armeniaca, T. g. 
buxtoni, and T. g. zarudnyi was predominantly limited 

https://doi.org/10.33256/31.4.201203

Species distribution models (SDMs) are frequently used to 
characterise current, past or future realised environmental 
niches. Two recent studies applied different approaches 
to infer range dynamics in eastern subspecies of the 
spur-thighed tortoise Testudo graeca Linnaeus, 1758. 
We discuss differences in the conclusions of the two 
papers and use multivariate environmental similarity 
surface (MESS) analyses to show that the results of the 
study by Turkozan et al. (2021), recently published in the 
Herpetological Journal, are compromised by extrapolation 
and therefore have to be interpreted with caution.

Keywords: Glacial refugia, multivariate environmental 
similarity surface (MESS), range shifts, species distribution 
modelling, spur-thighed tortoise
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by precipitation.  For the latter subspecies, this conflicts 
with the results of Turkozan et al. (2021).
 Turkozan et al. (2021) suggested that multiple glacial 
refugia existed and that since the LGM the potentially 
suitable geographic space has expanded for T. g. ibera, 
contracted for T. g. zarudnyi, and remained stable for T. 
g. terrestris. For T. g. armeniaca and T. g. buxtoni, the 
patterns were inconclusive. In contrast, Javanbakht et 
al. (2017) suggested that the ranges of the three studied 
subspecies (T. g. armeniaca, T. g. buxtoni, T. g. zarudnyi) 
experienced only slight shifts and did not expand 
significantly after the LGM.
 The methods used by Turkozan et al. (2021) and 
Javanbakht et al. (2017) are fundamentally different, 
having distinct underlying conceptual and computational 
principles. Correlative SDMs, such as MaxEnt used 
by Turkozan et al. (2021), are prone to extrapolation 
errors when projected through space and time (Elith 
et al., 2010; Owens et al., 2013). In contrast, profiling 
techniques based on multivariate analyses, such as the 
non-parametric kernel density estimation (KDE) and 
n-dimensional hypervolumes used by Javanbakht et al. 
(2017), are more robust and allow the characterisation of 
realised niches based on delimitation of niche volumes. 
Especially when calibration areas are small (VanDerWal 
et al., 2009), projections onto other time slices or 
geographic areas derived from correlative models are 
compromised by uncertainty (Rocchini et al., 2011). 
Unfortunately, Turkozan et al. (2021) did not account for 
such uncertainties.
 To examine the impact of extrapolation on their 
results, we used multivariate environmental similarity 
surface (MESS) analyses (Elith et al., 2010).  MESS 
analyses identify areas where one or more predictor 
variables experience conditions beyond the respective 
calibration range and, thus, are compromised by 
extrapolation (cf. Elith et al., 2010). To construct MESS 
maps, we georeferenced the minimum convex polygons 
(MCPs) used as model training range by Turkozan et al. 
(2021) and performed MESS analyses using the packages 
dismo (Hijmans et al., 2017) and raster (Hijmans, 2020) 
for Cran R (R Development Core Team, 2020).  MESS 
analyses were computed for each of the ten predictors 
used by Turkozan et al. (2021) separately, rescaled to 0 (no 
extrapolation) and 1 (extrapolation) and subsequently 
summed to show the number of variables affected by 
extrapolation per geographic region (for R code, see 
Supplementary Materials).
 Our results show that the range estimates of 
Turkozan et al. (2021) are significantly compromised 
by extrapolation. This refers to vast areas of the study 
region, for current conditions as well as reconstructions 
(mid-Holocene and LGM) across all three used general 
circulation models (GCMs; Supplementary Materials: 
Figs. S1-5).
 Parenthetically it may be noted that Turkozan et al. 
(2021) erred when they suggested that factor loadings of a 
principal component analysis (PCA) have been interpreted 
erroneously by Javanbakht et al. (2017). In contrast to 
MaxEnt, the non-parametric multivariate approach used 

by Javanbakht et al. (2017) requires orthogonal input 
variables.  To ensure orthogonality, input variables are 
subjected to a PCA prior to modelling (Barros et al., 2016), 
and the (past) climate reconstructions are projected in 
the PCA space derived from current climate conditions, 
resulting in different sets of principal components for 
each scenario. Thus, Turkozan et al. (2021) apparently 
misunderstood the matter and misinterpreted data 
presented by Javanbakht et al. (2017) within the frame 
of another method (MaxEnt).
 In addition to these methodological issues, the study 
by Turkozan et al. (2021) contains additional flaws. For 
instance, Turkozan et al. (2021) state in their Abstract 
that “Since the LGM, we hypothesise that the ranges of 
lineages have either expanded (T. g. ibera), contracted 
(T. g. zarudnyi) or remained stable (T. g. terrestris), and 
for other two taxa (T. g. armeniaca and T. g. buxtoni) the 
pattern remains unclear.”  This contradicts the Discussion 
section (p. 15), where the authors state that “the 
distribution model of T. graeca clades in the present work 
are in line with the classical glacial range contraction and 
interglacial range expansion model (Stewart et al., 2010) 
except the zarudyni [sic!] clade which contracted during 
the interglacial period.”  However, the authors did not 
present any convincing evidence for the latter statement.
Turkozan et al. (2021: p. 15) explained that their “analysis 
supports multiple potential refugia during LGM, namely 
Caucasus, Anatolia, and Balkans” and that “this is in 
line with the concept that temperate adapted taxa are 
confined to southern refugia (Stewart et al., 2010).” 
Stewart et al. (2010) define refugia as the geographical 
regions that correspond to the species’ maximally 
contracted geographical range during a glacial period. 
This is in line with the general understanding of glacial 
refugia (e.g., Hewitt, 2000; Joger et al., 2007; Schmitt, 
2007). Neither Javanbakht et al. (2017) nor Turkozan 
et al. (2021) inferred massive range restrictions during 
the last glacial cycle. Instead, it seems that climatically 
suitable space for T. g. armeniaca, T. g. buxtoni and T. 
g. zarudnyi experienced only slight shifts since the 
LGM, what contrasts with the massive Holocene range 
expansions of thermophilic species in more northern 
latitudes (Hewitt, 2000; Joger et al., 2007; Schmitt et al., 
2007) and the classical refugia model.  This situation has 
been discussed in detail in Javanbakht et al. (2017) and 
the interested reader is referred to this publication.
 Another misinterpretation of the results of 
Javanbakht et al. (2017) concerns bioclimatic variables 
shaping the distribution of T. graeca. Turkozan et al. 
(2021: p. 15) state that Javanbakht et al. (2017) ignored 
temperature-related factors delimiting the species 
distribution. However, Javanbakht et al. (2017: p. 635) 
stated that, besides precipitation as the main variable, 
“other environmental variables shaping the distribution 
of tortoises in Iran and Transcaucasia are the seasonal 
variation in temperature expressed as ‘temperature 
seasonality’ and ‘annual temperature range’” [and that] 
“seasonal temperature variation seems to be a limiting 
factor for tortoises in the Middle East, since this region is 
characterised by a continental climate with hot summers 
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and cold winters.  Hence, the combination of precipitation 
and high temperature seasonality appear to shape the 
distributional pattern of T. graeca in the eastern part of 
its range.” 
 Our Short Note revealed that the results of Turkozan 
et al. (2021) are compromised by misconceptions 
and misunderstandings. Therefore, they should be 
interpreted with caution.
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Processes of island colonisation have long been of interest to biologists.  Colonisation events themselves are rarely observed, 
but the processes involved may be inferred using genetic approaches. We investigated possible means of island colonisation 
by common toads (Bufo bufo) in western Scotland (the Isle of Skye and five neighbouring small islands), using evidence 
derived from nuclear microsatellites and mitochondrial (mt) DNA. Levels of microsatellite allelic richness for populations 
on Skye were high and comparable to adjacent mainland populations, but lower for populations on small islands. Pairwise 
measures of genetic distances between populations and a clustering algorithm were both suggestive of frequent gene flow 
between Skye and the mainland.  For small islands the levels of genetic differentiation were higher, implying stronger isolation 
and no evidence for inbreeding. The distribution of mtDNA haplotypes broadly mirrored the genetic structure revealed by 
microsatellites. Reconciled with existing palaeoclimatological evidence, since the last glaciation, our findings rule out the 
possibility that the B. bufo populations stem from glacial refugia, or that recent anthropogenic transfer of toads is responsible 
for their current distribution.  The most parsimonious explanation of our data is that the studied inshore islands have been 
repeatedly colonised via rafting from the mainland or neighbouring islands.  This may give us insights into the processes likely 
to take place when ice sheets retreat poleward as a result of climate change.  It also has implications for the colonisation of 
both native and invasive non-native species, and hence the biosecurity of island refugia.

Keywords:  Island biogeography, glaciation, amphibians, rafting 

IntroductIon

Island populations of widespread species have long 
attracted the attention of natural scientists (e.g. 

Wallace, 1880; Whittaker & Fernández-Palacios, 2007). 
Populations on islands are also of interest to geneticists, 
due to restrictions on gene flow and the influence of 
founder effects which can both impact on population 
viability (Frankham, 1997; Reed & Frankham, 2003). 
Modes of island colonisation and persistence are further 
of relevance for studies into how species might adapt to 
future rapid environmental change (Courchamp et al., 
2014). 
 As one of the most severely threatened groups of those 
whose status has been assessed (IPBES, 2019), amphibians 
are a global conservation priority. Amphibians are also 
suitable subjects for island biogeographical studies, as 
they have limited powers of dispersal compared to flying 
animals such as birds, insects and bats, or organisms that 
drift by wind or zoochory (Cushman, 2006; Allentoft & 
O’Brien, 2010). Their low to moderate salinity tolerance 

(reviewed in Hopkins & Brodie, 2015) further implies 
difficulty particularly when colonising oceanic islands, 
as suggested by early authors including Darwin (1859, 
p. 393). For example, archipelagos such as the Canaries, 
Galapagos and Mauritius are occupied by reptiles, but 
do not harbour native amphibians.  Amphibians have, 
however, colonised other islands by both anthropogenic 
and natural means. Human introduction may be 
accidental (Kuraishi, Matsui & Ota, 2009) or deliberate 
(e.g. Shine, 2018). In some cases, amphibians arrived 
naturally before islands were cut off due to sea level rise 
(e.g. Wang et al., 2014), and in others they colonised 
islands after their formation. Natural colonisation of 
islands is assumed to take place for example by rafting 
upon floating vegetation or debris (Vences et al., 2003; 
Measey et al., 2007; reviewed in Marin da Fonte et al., 
2019; see also Schiesari et al., 2003 for the frequent 
occurrence of rafting by amphibians in large tropical river 
basins). In inshore situations, dispersal by swimming 
could also be assisted by conditions of low-salinity, for 
example when a lack of wind allows a layer of less dense 
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freshwater from river outflow to lie on top of sea water 
(discussed in Seppä & Laurila, 1999). Other proposed 
mechanisms for dispersal of amphibians include tornados 
(Elsom, 1988) and transport of eggs by waterbirds (for 
an example on fish see Lovas-Kiss et al., 2020), although 
documented evidence is largely lacking. 
 Glaciation has been a principle geomorphological and 
biogeographic shaper of lands beyond 45° latitude. In 
Europe, this has led to a pattern of biodiversity richness 
in central and southern Europe, with reduced diversity 
linked to post-glacial recolonisation in the north (e.g. 
Hewitt, 2000). The glacial history of Scotland is similar 
to that of other European high latitudes, and its fauna 
is well-studied. Interestingly, the melting of the main 
glaciers at the end of the last glacial c. 15,000 years before 
present (ybp) (Mayle et al., 1F999) in Scotland was also 
followed by a cold period between c. 12,900 and 11,700 
ybp, which led to the temporary re-forming of glaciers 
ranging from Loch Lomond in the central belt northward 
to Torridon in the western Highlands (the Younger Dryas 
or Loch Lomond Stadial; Bradwell et al., 2008; Ballantyne, 
2019). 
  The western Scottish Highlands are characterised by 
low human population density and low levels of intensive 
agriculture, and are home to three species of amphibians 
(the common toad B. bufo, the common frog Rana 
temporaria and the palmate newt Lissotriton helveticus). 
These species are recorded regularly not only on the 
mainland but also on a range of inshore islands (McInerny 
& Minting, 2016; Fiegna et al., 2017; NBN, 2019), which 
were already separated from the mainland when Britain 
was still connected to mainland Europe up to 8000 ybp 
(Lambeck, 1995; Ballantyne, 2019). In the present study 
we focus on B. bufo, a widespread species which has 
previously served for population genetic investigations 
in northern European archipelagos (Seppä & Laurila, 
1999; Roth & Jehle, 2016). We employ information 
derived from nuclear and mitochondrial DNA markers 
to (i) document spatial patterns of genetic variation 
across the Isle of Skye, adjacent mainland and small 
islands of the Inner Sound, and (ii) use these data to infer 

possible means of island colonisation.  More specifically, 
we reconcile the obtained genetic data with existing 
evidence from palaeoclimatology, and ask whether the 
islands under study became colonised prior to the Loch 
Lomond Stadial, for example via land bridges, or after this 
period when meltwater would have temporarily reduced 
the salinity of inshore waters.  Alternatively, B. bufo may 
also have reached these islands more recently through 
human introductions or natural means. Our study 
complements similar local investigations for example 
on small mammals (White & Searle, 2007; 2008), and 
provides information on the origin of the westernmost 
natural populations of a widespread European anuran. 

mATeRiAlS & meTHODS

Field sampling
This study took place in the western Scottish Highlands 
(UK), and encompassed two waterbodies on the Isle of 
Skye (1 656 km2 in area, connected to the mainland by a 
ca. 500 m long bridge erected in 1995), two waterbodies 
on the adjacent mainland, and seven waterbodies across 
all islands with standing freshwater in the Inner Sound 
(Rona and Raasay, two waterbodies each; Scalpay, Pabay 
and Crowlin, one waterbody each; see Table 1 and 
Figure 1). Crowlin is seldom visited and like Pabay has 
no permanent human population, while Scalpay and 
Rona each have fewer than five inhabitants.  The isolated 
islands range in size from 1.3 km2 (Pabay) to 53.4 km2 

(Raasay) and have been separated by sea since the last 
period of glacial activity in the area ended approximately 
9500 years BP (Lambeck, 1995), although it is possible to 
cross from Skye to Scalpay during extreme low tides. A 
total of 157 samples were collected between 2013 and 
2015, as eggs derived from ten spawn strings at each site, 
or tadpoles taken at least 10 m apart to reduce the risk 
of sampling siblings (n = 9-31 individuals per population, 
Table 1).  Samples were stored in 1.5 ml Eppendorf tubes 
filled with absolute ethanol. 

location Site n A/l AR Ho He FiS ml PA

Loch Iain Oig, Kyle of Lochalsh, 
mainland

MAK 10 5.38 3.73 0.54 0.65 0.18 0 7

Toscaig, nr Applecross, mainland MAT 10 4.50 3.14 0.51 0.51 0.00 0 2
Lochan Dubh, Broadford, Skye SKB 11 3.88 3.33 0.36 0.41 0.13 0 2
Loch a Mhuilinn, Portree, Skye SKP 20 4.25 2.73 0.49 0.51 0.03 0 2
Pabay PAB 19 1.63 1.57 0.26 0.20 -0.27 4 0
Loch Beag, Raasay RAB 9 3.38 2.72 0.49 0.50 0.027 1 1
Oskaig, Raasay RAO 10 4.00 2.86 0.45 0.47 0.053 1 2
Loch na h Iolaire, Rona ROI 11 3.25 2.49 0.34 0.39 0.12 0 1
Township reservoir, Rona ROT 13 2.88 2.33 0.37 0.36 0.00 3 1
East of Loch Dubh, Scalpay SCD 10 4.50 3.30 0.56 0.58 0.024 0 3
Loch nan Leac, Crowlin CRO 31 4.73 2.90 0.56 0.61 0.12 0 6

n, number of individuals sampled; A/L, mean number of alleles per locus; AR, allelic richness; Ho, observed heterozygosity; He, 
expected heterozygosity; ML, number of monomorphic loci; PA, number of private alleles.

Table 1. Genetic variability parameters for 11 Bufo bufo populations characterised at 8 microsatellite loci.
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genetic analyses 
DNA was extracted from whole eggs or tadpole tail tissue 
using the Qiagen DNEasy Blood and Tissue extraction 
kit (Qiagen, UK) following the manufacturer’s protocol. 
Concentration of extracted DNA was quantified using 
a NanoDrop Lite spectrophotometer (Thermo Fisher 
Scientific, USA) and standardised to approximately 10 
ng/µl. 
 For analyses of mitochondrial DNA, a 722bp long 
fragment of the cytb region was amplified for three individuals 
from all 11 population using PCR primers described in 
Recuero et al. (2012; F: ATCTACCTTCACATCGGACGAG, 
R: AGTTTRTTTTCTGTGAGTCC), and a 10 µl PCR reaction 
mix containing 10–50 ng DNA, 5 pmol (5 mmol/L) of 
each primer, 0.15 mmol/L of each dNTP, 1.5 mmol/L 
MgCl2, and 0.5–1.0 U Taq polymerase (GoTaq) in the 
manufacturer’s buffer.  The PCR reaction was carried out 
at the following amplification conditions: 2 min at 96 °C, 
followed by 37 cycles of 30 s at 94 °C, 45 s annealing at 
53 °C and 1 min 30 s at 72 °C, and a final 5 mins at 72 °C. 
In total, 154 samples from all but one population (SCM) 
were also genotyped at eight existing B. bufo microsatellite 
loci (Bbuf11, Bbuf15, Bbuf24, Bbuf39, Bbuf46, Bbuf54, 
Bbuf62, and Bbuf65; Brede et al. 2001). PCRs contained 
10–50 ng DNA, 5 pmol (5 mmol/L) of each primer, 0.15 
mmol/L of each dNTP, 1.5 mmol/L MgCl2, and 0.5–1.0 U 
Taq polymerase (Advanced Biotechnologies, Columbia, 
MD) in the manufacturer’s buffer, at a total volume of 
10 µl.  The PCR profiles were 94 °C for 2 min, followed by 
39 cycles of 94 °C for 30 s, the primer-specific annealing 
temperatures as in Brede et al. (2001) for 30 s, and 72 
°C for 30 s.  We used PCR primer-specific annealing 
temperatures as described in Brede et al. (2001), with the 
exception of Bbuf11 which was found to yield more PCR 
product at an annealing temperature of 56 °C. Primers 
were labelled with fluorochromes PCR products, and 
were separated by capillary electrophoresis using an ABI 
3130 Genetic Analyser (Applied Biosystems), and sized 
using Peak Scanner Software v1.0 (Applied Biosystems).

Statistical analyses
Haplotype sequences derived from the mtDNA analysis 
were aligned using Clustal W (Thompson et al., 1994) 
in BioEdit ver 7.1.3.0 (Hall, 1999).  Obtained sequences 
were compared with existing data in GenBank, with 
haplotype designations following the terminology of 
Tuncay et al. (2018). To illustrate the population share 
across haplotypes, and to distinguish between ancestral 
and derived haplotypes, NETWORK 10 (Fluxus Technology 
Ltd., www.fluxus-engineering.com/sharenet.htm) was 
used to compile a median-joining (MJ) network.  Due 
to the limited number of samples available for each 
population we refrained from detailed statistical analyses.
For microsatellites, observed (Ho) and expected (He) 
heterozygosities, deviations from Hardy-Weinberg 
equilibrium and pairwise FST values between populations 
were calculated using the software GENEPOP 4.4 (Rousset, 
2008).  Allelic richness values for each population were 
calculated using FSTAT (Goudet, 1995).  Following Rousset 
(1997), a pattern of isolation by distance was evaluated 

using Mantel tests (10000 permutations) comparing 
linearised FST values FST /(1- FST) with log-transformed 
pairwise geographic distances carried out using the R 
package VEGAN (Oksanen et al., 2018). A Kruskal-Wallis 
test was carried out in R version 3.5.0 (R Core Team, 
2018) to compare FST values calculated for populations 
separated by sea and those separated by land.  Spearman 
rank correlations between the mean of a population’s 
FST values and both its allelic richness and expected 
heterozygosity were also calculated using R. STRUCTURE 
2.3.4 (Pritchard et al., 2000) was used to identify the 
most likely number of genetic clusters (K) within the 
dataset. STRUCTURE uses a Bayesian iterative algorithm 
to assign the membership of each sample probabilities 
to a pre-defined number of clusters. Largely following 
Porras-Hurtado et al. (2013), 20 independent runs were 
performed for each value of K from 1 to 13, with 200 
000 Markov Chain Monte Carlo iterations after a burn-
in of 200,000 iterations. The best-supported value of K 
was determined using ΔK, related to the rate of change 
in log probability between successive K values (Evanno 
et al., 2005), using STRUCTURE HARVESTER (Earl & von 
Holdt, 2012). Replicates for each level of K were aligned 
using CLUMPP 1.1.2 (Jakobsson & Rosenberg, 2007) 
and graphical output was produced using DISTRUCT 1.1 
(Rosenberg, 2004).

ReSUlTS

The mtDNA analysis revealed a total of five haplotypes 
(Fig. 1). H_9 (32 % of all individuals, present in six 
populations) is commonly reported in the western 
distribution of B. bufo, and has been previously found 
in the UK (Recuero et al., 2012; Arntzen et al., 2017); all 
other haplotypes have not previously been reported for 
B. bufo.  The most frequent haplotype (H_62) represented 
56 % of individuals across nine populations, and differed 
from H_9 by a single base substitution.  Three further 
haplotypes were represented by one (H_65) or two 
(H_63 and H_64) individuals (Fig. 2). The new sequences 
have been deposited in Genbank (accession numbers: 
MZ318468 – MZ318490).
 For microsatellites, the PCR success rate was 91 %. 
Mean number of alleles per locus ranged between 1.63 
for an island population (PAB) and 5.38 for a mainland 
population (MAK). Both mainland populations and one 
Skye population (SKB) showed higher levels of allelic 
richness (3.14-3.73) than all but one island population 
(SCD, on Scalpay which is connected to the Isle of Skye 
at low water spring tides (Admiralty Chart 2498, 2018). 
Four populations revealed monomorphic loci, all of 
which were situated on small islands (Table 1).  FST values 
for populations on the mainland and on the large Isle 
of Skye, or on the same small island ranged from -0.01 
to 0.13, whereas those between populations on the 
smaller islands ranged from 0.07 to 0.50 (Table 2), with 
highly significant differences between these two groups 
(Kruskal-Wallis test, p <0.001). The allelic richness of 
a population was strongly negatively associated with 
its degree of isolation (defined by the mean of the 
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single cluster, whereas each of the remaining three small 
islands represented a distinct genetic unit (Fig. 3). 

DiSCUSSiOn

The present paper sought to combine new information 
drawn from DNA with existing geographic and 
palaeoclimatological evidence to infer the most likely 
colonisation history of inshore islands in the western 
Scottish Highlands by B. bufo.  Below, we first discuss the 
spatial patterns of genetic variation. We then consider 
possible mechanisms of island colonisation which could 
have led to the observed island distribution: deliberate 

pairwise FST values with all other populations; Spearman 
rank correlation coefficient -0.84, p = 0.001). Similarly, 
expected mean heterozygosity showed a marginally 
significant tendency towards a negative correlation with 
mean FST (Spearman rank correlation coefficient -0.58, p 
= 0.062).  A weak, but significant, isolation-by-distance 
effect was present (Mantel test, r = 0.23, p = 0.04).
 The log probability of numbers of clusters according 
to the STRUCTURE analysis increased from K = 1 through 
K = 7, with a modal value of ΔK at K = 4. The genetic 
clusters reflected their geographic context. All mainland 
and Skye populations as well as the populations on 
Raasay and Scalpay were predominantly assigned to a 

Figure 1. Locations of Bufo bufo breeding sites sampled and haplotype distribution. Inset shows position of study area in 
Scotland. See Table 1 for more detail of sampling sites. Contains Ordnance Survey data © Crown copyright and database 
right.
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Figure 2. Median Joining Haplotype Network of B. bufo cytb sequences from the study area. Nucleotide positions of 
mutated sites are shown as numbers; shared haplotypes are divided into colours representing the populations shown in 
Figure 1.

Figure 3. Bar plot showing assignment of all sampled individuals to the 4 genetic clusters determined by STRUCTURE. Each 
horizontal line denotes an individual, with the size of each colour bar corresponding to the probability of membership of 
each of four clusters. Three letter codes refer to breeding sites, as shown in Figure 1 and Table 1.

mAk mAT SkB SkP PAB RAB RAO roI rot SCD

MAT 0.04
SKB -0.01 0.05
SKP 0.10 0.13 0.06
PAB 0.32 0.38 0.34 0.32
RAB 0.11 0.20 0.09 0.17 0.35
RAO 0.15 0.30 0.18 0.23 0.37 0.07
ROI 0.24 0.27 0.21 0.28 0.49 0.29 0.32
ROT 0.30 0.36 0.30 0.37 0.50 0.33 0.32 0.05
SCD 0.07 0.13 0.09 0.18 0.21 0.13 0.15 0.25 0.27
CRO 0.13 0.22 0.11 0.20 0.40 0.17 0.24 0.28 0.32 0.20

Table 2. Pairwise FST values for 11 Bufo bufo populations. Continuous box borders denote populations separated by land, 
the broken border denotes populations separated by land and the Skye Bridge, and the remaining values show populations 
separated by sea.

D.  O'Br ien et  a l .

209

or accidental human introduction, colonisation of islands 
before their isolation, colonisation of islands by swimming 
before salinification of the Inner Sound, and colonisation 
by rafting. Whilst not conclusively supporting a single 
mechanism, our findings strongly suggest that the last 
is most likely.

Population genetic structure
Previous studies of B. bufo populations on northern 
European inshore islands have revealed significant levels 
of differentiation between islands (Seppä & Laurila, 1999; 
Roth & Jehle, 2016), a finding which is mirrored in our 
study.  We also revealed an overall concordance between 
the two genetic markers we employed. For example, the 
two populations on the island of Rona (ROI and ROT) 
showed unique mtDNA haplotype signatures combined 
with representing a distinct microsatellite-based cluster. 
This suggests that the colonisation did not take place 
through ‘island hopping’ after a single colonisation event 
from the mainland, but, for example, multiple times 
from different mainland sources. Haplotype (H_9) has 
previously been found in the UK as well as in central 
and northern Europe (Recuero et al., 2012; Arntzen 
et al., 2017). Its ancestral position in our study area is 
indeed confirmed by the haplotype network, which also 
illustrates that all other haplotypes are separated from 
each other by a single base substitution. Haplotypes 
which were previously unrecorded in other parts of the 
species’ range) were also  for example found on the 
western coast of Norway (Tuncay et al., 2018; see also 
Thörn et al., 2021 for multiple recolonisation routes of 
B. bufo in Scandinavia), and more extended sampling is 
required to assess their wider distribution and possible 
relevance for biogeographic patterns. It also needs to be 
borne in mind that, at a sample size of three individuals 
per population and with at least five haplotypes present 
in the area, our sampling regime does not allow us to 
fully capture the spatial distribution of existing diversity. 
Based on microsatellites, FST values between populations 
of the Inner Sound islands are markedly higher than 
found in previous studies of B. bufo in study areas which 
are uninterrupted by seawater (Brede & Beebee, 2004; 
Luquet et al., 2015); or for the closely related B. spinosus 
(Wilkinson et al., 2007; Martinez-Solano & Gonzalez, 
2008), suggesting their rather strong isolation. Levels 
of differentiation between the two populations on Skye 
and the two populations on the mainland were however 
markedly lower, suggesting recent gene flow and 
coinciding with data obtained for small mammals also 
on Skye (White & Searle, 2008). That population on the 
nearby islands Raasay and Scalpay contained the same two 
mtDNA haplotypes and formed a single microsatellite-
based cluster with Skye and the mainland suggests that 
Skye serves as a stepping stone for their colonisation. 
The distinctiveness of microsatellite genotypes of PAB 
on the small island of Pabay is paralleled by an excess of 
heterozygotes, likely reflecting that the local population 
consists of a very small number of individuals (no eggs 
or tadpoles were found in the single known available 
waterbody during later surveys, unpublished).  

 The degree of physical isolation of given islands from 
the mainland and the northward direction of prevailing 
currents paralleled the observed standing amounts of 
genetic diversity. Monomorphic loci were only found 
on smaller islands (four out of the seven populations), 
and are suggestive of genetic drift under a scenario of 
isolation. Possibly linked to island size, the overall level 
of genetic differentiation was higher than previously 
recorded for other populations of this species that were 
also separated by seawater (Seppä & Laurila, 1999; Roth 
& Jehle, 2016). 

island colonisation
Human introduction, both accidental and deliberate, 
are well documented for islands of western Scotland. 
For example, wood mice Apodemus sylvaticus on islands 
of the Outer Hebrides appear more closely related to 
populations from Scandinavia than to those from the 
Scottish mainland or Skye, possibly through accidental 
transport in Viking cargoes, although their parasites do 
not show the same pattern (Berry, 1979; Angus, 2001). 
The islands of the Inner Sound have been visited by boat 
since the days of the first settlers, and current settlement 
patterns or island sizes are rather uninformative for 
tracing releases (for example, the vole Microtus agrestis 
is common on the island of Uist but absent from the 
larger, more inhabited neighbouring island of Lewis and 
Harris; Angus, 1980). 
 Herpetofauna, including bufonids, are well known to 
be accidently transported though human activity (White 
& Shine, 2009; Tingley et al., 2017).  All of the islands have 
been used for rearing livestock, leading to opportunities 
for stowaways. However, interviews with a family of local 
graziers suggested that, for the example of Crowlin, there 
has been no transport of fodder in at least the last 100 
years. Since prior to construction of roads and railways 
the main means of transport to the area was by boat, 
larger islands on the Outer Hebrides would be more likely 
to hold B. bufo than the relatively unimportant islands 
of the Inner Sound if accidental transport is common. 
However, there are no records of toads from the Outer 
Hebrides prior to the 21st century (NBN 2019), whereas 
the New Statistical Account (1845) already reported the 
“islands of the parish abound with them” in Kilmuir in the 
north of Skye.  This suggests that accidental transport is 
an unlikely means of colonisation.
 Intentional amphibian introductions have generally 
been of edible species (e.g. Lithobates catesbeanus 
to the Philippines; Pili et al., 2019), for pest control 
(e.g. Rhinella marina; Shine, 2018) and for ornamental 
purposes and the release of pets (e.g. Ichthyosaura 
alpestris to France, New Zealand and mainland Britain; 
Arntzen et al., 2016). It seems unlikely that B. bufo 
would have been deliberately introduced for the above 
reasons, although releases are known from similar 
habitats in Norway (Dolmen & Seland, 2016). Deliberate 
small-scale introductions elsewhere in Scotland have 
been documented for the great crested newt Triturus 
cristatus, the smooth newt L. vulgaris and the alpine 
newt I. alpestris (McInerny & Minting, 2016), in addition 
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to extra-limital releases of R. temporaria and L. helveticus 
which served as demonstration animals from schools 
in the Outer Hebrides (Stewart Angus, unpublished 
data).  Such small-scale introductions would however be 
reflected in the genetic make-up of populations (e.g. low 
allelic richness or lack of haplotype diversity, see Arntzen 
et al., 2010; Tingley et al., 2015), and would not explain 
the population on the uninhabited Crowlin Island. 
 Natural colonisation therefore seems the most likely 
explanation of the presence of toads on Skye and the 
Inner Sound. Toads may have colonised these islands 
for example via land bridges prior to the Loch Lomond 
Stadial and have persisted since, as has been argued for 
shrews (White & Searle 2008). B. bufo reaches latitudes 
of 68° and occurs within 1 km of glaciers elsewhere in 
Europe (Sillero et al., 2014). However, at the time of 
the Loch Lomond re-advance, ice sheets were present 
over much of Scotland (Ballantyne, 2019). While other 
amphibians can reproduce in waterbodies on permafrost 
(Salamandrella keyserlingii, Alfimov & Berman, 2010), 
we have found no similar records for anurans such as B. 
bufo. Notwithstanding phylogeographic evidence from 
other taxa for persistence in glaciated areas (e.g. King 
et al., 2020; Taylor, 1983), we therefore consider the 
hypothesis of relict populations surviving during the Loch 
Lomond Stadial to be rather unlikely.
 A further hypothesis is that B. bufo could have 
colonised Skye and surrounding islands following the Loch 
Lomond re-advance and related rising temperatures, 
but before the islands became cut off by salt water. The 
current salinity of Inner Sound is slightly lower than that 
of the open sea (34 – 34.5 ‰ salt c.f. 35 ‰ in the nearby 
Atlantic; Barne et al., 1997) but well above the tolerance 
level for B. bufo (Beebee, 1983). Due to isostatic uplift of 
islands offsetting eustatic sea level rises, the relative sea 
level in the region remained roughly the same over the 
last 9000 years (Shennan et al., 2000), meaning that the 
islands were not joined to the mainland. However, the 
waters of the largely landlocked Inner Sound would have 
been mainly composed of meltwater from retreating 
glaciers. Meltwater from surviving glaciers in the 
mountains would probably have been at its peak in spring, 
coinciding with amphibian movements and spawning, 
and the boreal toad Anaxyrus boreas has been recorded 
swimming in glacial runoff (Taylor, 1983). Salt tolerance 
in amphibians may not be as rare as previously assumed, 
with coastal populations showing strong evidence of 
increased saltwater tolerance (Hopkins & Brodie, 2015; 
Albecker et al., 2021); indeed anecdotally B. bufo has 
been described swimming in the Baltic Sea at a salinity 
of 5-8 ‰ (Thulin & Andrushaitis, 2003).  Under a scenario 
of colonisation exclusively by swimming, each of the 
islands would however have become isolated broadly 
simultaneously by the increasing salinity, as a hypothesis 
leading to long-term isolation associated with significant 
genetic erosion (effective population sizes in B. bufo are 
low; Brede & Beebee, 2004, Coles et al., 2019). This is 
however not reflected in our genetic data, which show 
that small islands such as Crowlin have substantial levels 
of genetic variation. 

 Although amphibians likely show lower propensity 
for colonisation by rafting than more desiccation-
resistant taxa such as reptiles or arthropods, this mode 
of dispersal appears possible across the relatively short 
inshore distances involved in this study (for a review 
see Marin da Fonte, 2019). The melting of glaciers is 
also associated with frequent spates, whereby sections 
of riverbank detach and float downstream and out to 
sea, along with biota they contain (washouts of pools 
adjacent to rivers, possibly containing amphibian spawn 
or larvae). Such processes might have been paralleled 
by ‘rock slope failures’ arising from seismic activity on 
shorelines associated with release from glacial loading 
(Ballantyne et al., 2014). The general occurrence of 
occasional rafting would leave a genetic signature in 
which islands with larger coasts and those closest to the 
mainland river outflows are characterised by the highest 
levels of genetic diversity due to repeated arrivals of new 
colonists. 
 We found clear evidence of strong isolation between 
small island and mainland populations, with the most 
northerly islands showing the lowest levels of allelic 
richness (with the exception of the very small population 
on Pabay), whereas genetic differentiation between 
Skye and the mainland was less pronounced. Skye is 
connected to the mainland by a ca. 500 m long bridge 
completed in 1995, although we do not assume that it is 
an important means of colonisation and gene flow for B. 
bufo (the highly mobile pine marten Martes martes have 
been able to colonise Skye over the bridge, but by 2010 
were not known from further north than Broadford in 
the south of Skye; Cottis, 2011). Given the large B. bufo 
populations, their long documented history on the island 
and their wide spatial distribution on Skye before and 
after the bridge’s construction (New Statistical Account, 
1845; NBN, 2019), it seems highly unlikely that enough 
toads to affect population genetics could have crossed 
the bridge. Skye is also connected to Scalpay by land at 
extreme low tides (Admiralty Chart 2498, 2018), which 
likely explains the low FST values between these sites. 
Occasional zoochory by birds would result in similar 
spatial genetic patterns but is generally deemed less 
likely, although birds have locally been found to carry 
snails (Evans, 1915) and might have led to colonisation 
of the nearby Uists by a further two molluscs species 
(Angus, 2001). Taken together, our evidence suggests 
that rafting is the most likely means of colonisation, 
and there is clearly an opportunity for future studies of 
amphibians and other low-mobility salt-intolerant taxa 
through systematic examination of rafts and debris. 
 The coasts of Scotland have much in common with 
other high latitude post-glacial marine-influenced areas 
such as Norway, Canada, Alaska, Chile and Southern New 
Zealand. The range of colonisation modes may differ 
in non-glacial settings, however. From a conservation 
perspective, our findings may offer some hope for 
unassisted range expansion of amphibians. The lack of 
evidence of inbreeding is particularly positive, and may 
be applicable for isolated mainland coastal populations 
as well as those on islands. On a more negative note, 
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the ability of amphibians to cross seemingly impassable 
barriers means that island populations may not be safe 
from the spread of disease (e.g. chytrid) or non-native 
species (e.g. risk of colonisation of Maude Island New 
Zealand stronghold of Leiopelma hamiltoni, by invasive 
Litoria spp.). 
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Benefits conferred to animals living in groups may be greater if groups are formed by relatives rather than non-relatives, 
because cooperating with relatives increases the probability of their own genes being passed on to group offspring (inclusive 
fitness). Non-social aggregations are formed in response to environmental characteristics, while social aggregations are 
formed from the attraction among individuals. The attraction or repulsion between individuals is mediated by recognition 
mechanisms, which mediate important ecological processes and behaviours.  Here, we conducted laboratory experiments 
to test if tadpoles of two sympatric bufonids, Rhinella icterica and R. ornata, are able to recognise siblings. We collected 
eggs of the two species in the field and raised them in laboratory settings, according to three different methods: siblings and 
non-siblings reared in separated containers; siblings and non-siblings reared in the same container separated by a plastic 
net; and eggs from the same spawn reared separately, each one in an individual container.  Later, we tested if tadpoles 
could choose between groups of siblings and non-siblings.  The results indicate that tadpoles of neither species were able 
to discriminate between siblings and non-siblings, regardless of the rearing methods.  Therefore, kinship is less important 
than environmental factors in tadpole aggregation behaviour of these species, and it may be dependent on the balance 
between costs and benefits.  Our results can be used as a start point to better understand tadpole aggregation behaviour and 
recognition mechanisms in these species. 

Keywords:  kin recognition, aggregation behaviour, chemical communication, Atlantic Forest

IntroductIon

Tadpoles of many anuran species live in groups, which 
increases individual survival by decreasing predation 

rate, and increasing foraging and thermoregulation 
efficiency (Watt et al., 1997; Hoff et al., 1999; Eterovick, 
2000; Hero et al., 2001). However, when resources are 
limited, there are some costs of group formation, as 
increasing competition, cannibalism, predation, disease 
susceptibility, and inbreeding (Hamilton & May, 1977; 
Shykoff & Schmid-Hempel, 1991; Pfennig et al., 1993; 
Goater et al., 1994). 
 Non-social groupings are formed in response to 
environmental characteristics (e.g., feeding microhabitats 
and temperature gradients), while social groups are 
formed from attraction between individuals (Wassersug, 
1973; Hoff et al., 1999).  An aggregation can be formed 
by genetically related or unrelated individuals (Waldman, 
1982; Glos et al., 2007), but benefits conferred to animals 
living in groups may be greater if groups are formed by 
relatives than non-relatives, because cooperating with 
relatives increases the probability of their own genes 
being passed on to group offspring (inclusive fitness; 
Hamilton, 1964). 

 In this context, species that live in groups of related 
individuals tend to show adaptations that allow kin 
recognition (Blaustein & O'Hara, 1983; Waldman, 1988). 
Thus, association between siblings may act in aggregation 
maintenance through sharing spatial and temporal 
distribution (indirect recognition), through phenotypic 
matching (direct recognition), or both (Blaustein & 
O’Hara, 1983; Waldman, 1988). 
 Tadpoles of some anuran species discriminate 
between siblings and non-siblings (reviewed in Blaustein 
& Waldman, 1992). This discrimination consists of 
behaviour differences toward relatives of different 
kinship levels and non-relatives (Waldman, 1988).  The 
adaptive values of this behaviour may be related to 
increasing and developing the tadpoles' coexistence in 
related groups (Waldman, 1988; Blaustein & Waldman, 
1992).  Mechanisms that allow siblings recognition 
in tadpoles can give them adaptive advantages, as 
in tadpoles of some species that have more rapid 
development when living among relatives (Jasienski, 
1988; Twomey et al., 2008), and as some cannibalistic 
tadpoles that prevent predation of relatives (Pfennig et 
al., 1993). 
 Recognition mechanisms in tadpoles are developed 
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during the embryonic phase or shortly after hatching 
(Waldman, 1981, 1882; Blaustein & O’Hara, 1982) and 
it may persist following metamorphosis (Blaustein et 
al., 1984; Waldman, 1989; Graves et al., 1993). There 
are three basic types of kin recognition mechanisms 
(Blaustein & O'Hara, 1983). First, recognition may 
originate from social or familiar learning mechanisms, a 
process by which individuals from some familiar groups 
learn to recognise others from early development stages, 
even if they have not developed a mechanism to identify 
their siblings (Waldman, 1982). Second is phenotypic 
matching, which occurs when an individual learns and 
remembers a specific characteristic of their own or their 
relatives (e.g., odour, colour, or particular mark), which 
may be a similar feature or a noticeable difference. 
Phenotypic matching is fundamentally different from 
familiar recognition because they provide recognition 
of unfamiliar individuals (Blaustein & O'Hara, 1983). 
The third one relies on specific genes recognition, also 
provides kin and non-kin recognition. However, this 
mechanism is innate and is expressed by a phenotypic 
characteristic (e.g., odour) and different mechanisms can 
operate isolated or simultaneously (Blaustein & O'Hara, 
1983).
 Here, we conducted laboratory experiments to test 
if tadpoles of two toad species, Rhinella icterica and R. 
ornata can recognise siblings. Rhinella icterica belongs 
to the R. marina group (Maciel et al., 2010), while R. 
ornata is a member of the R. crucifer group (Baldissera 
Jr. et al., 2004).  These species have schooling behaviour 
(Eterovick, 2000; Simon, 2010; pers. obs.), likely living in 
groups of siblings, because spawn consists of thousands 
of eggs. They often co-occur in sites within the Atlantic 
Forest of south-eastern Brazil, where they have a well-
known reproductive season, laying eggs in shallow 
waters (Bertoluci, 1992, 1998; Bertoluci & Rodrigues, 
2002; Narvaes et al., 2009).  We addressed the following 
questions: (1) do tadpoles prefer to associate with 
siblings than non-siblings (kin recognition)?; and (2) 
does familiarity (prior social contact with non-siblings 
tadpoles) influence recognition mechanisms?

meTHODS

We collected eggs of both species between July and 
August 2017 at the Boracéia Biological Station  (23˚38' 
S, 45˚52' W), an Atlantic Forest reserve, São Paulo, 
south-eastern Brazil. We collected two spawns each 
of both Rhinella icterica and R. ornata (ca. 600 eggs 
of each spawn). Spawn could be easily assigned to 
species in the field because R. ornata has smaller eggs 
arranged in a single string, while R. icterica deposits 
larger eggs arranged in a double string (Simon, 2010; 
pers. obs.). We transported eggs to the Laboratório de 
Zoologia de Vertebrados, Escola Superior de Agricultura 
Luiz de Queiroz, Universidade de São Paulo, in plastic 
pots containing water from ponds where spawns were 
collected.
 Spawn were raised in the laboratory at room 
temperature, with a natural photoperiod, and with 
aeration by aquarium pumps. Embryos were between 

stages 16 and 18 (Gosner, 1960) when they were 
separated from the rest of the spawn. We used three 
different rearing methods: (1) tadpoles without prior 
contact with non-siblings: 300 eggs reared with siblings 
only, from the same spawn allocated in two 50 L opaque 
container (one container for each spawn) (2) tadpoles 
of two different spawns reared in the same container, 
enabling contact with chemical and visual cues of non-
siblings: 150 eggs from each spawn in an opaque 50 L 
container and each group of tadpoles separated by a 
plastic net (0.5 mm mesh); and (3) eggs from the same 
spawn reared separately (n=120), each in a 0.5 L opaque 
container.  Tadpoles were fed once daily with ornamental 
fish food. Water in each container was changed twice a 
week to keep the water clean. After metamorphosis, we 
kept the juveniles in a terrarium, and prior to release at 
the locations where the eggs were collected.
 Experimental trials were conducted between 
August and September 2017 between 0800 and 1800, 
using tadpoles between stages 25 and 38. Trials were 
carried out in four plastic containers (100 × 15 × 10 cm) 
filled with spring water (pH = 6.3; Fig. 1). At each end 
of a container a 0.5 mm mesh plastic net was placed, 
delimiting the stimulus groups areas (20 tadpoles in each 
group). The central part of each container was marked 
with a permanent pen, dividing it into three equal-sized 
areas. 
 At the beginning of each trial, one tadpole was placed 
at the centre of each of the four containers (see similar 
designs in O’Hara & Blaustein, 1981, 1982; Blaustein 
& O’Hara, 1982, 1986; Cornell et al., 1989; Saidapur & 
Girish, 2000; Leu et al., 2013; Rajput et al., 2014; and 
Pizzato et al., 2016). After 10 minutes of acclimation, 
we observed tadpole behaviour using a video recording 

Figure 1. Test arena. Bottom: it is represented, in the right 
and left extremities, the stimulus groups (20 tadpoles in 
each group) and, in central area, the test tadpole. Dashed 
line represents a net, which delimits stimulus groups areas, 
but allows chemical and visual stimuli flow to central region. 
Vertical grey lines represent demarcation of areas close to 
each stimulus group. Each division is 20 cm long, totalling 
100 cm of arena total length.
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camera (Kodak z990) for 29 minutes, and then measured 
the amount of time each tadpole remained in the region 
next to each stimulus group. Each tadpole was tested 
only once and after each test containers were cleaned 
and water changed.  At each test we turned containers 
at 90° and inverted the side of each stimulus group, in 
order to avoid possible environmental influences. Each 
trial was replicated 32 times during the daytime period 
on successive days. Four replicates were filmed at a time. 
The same procedures were repeated for both species. 
 For each trial, both stimulus groups were chosen 
considering kinship and familiarity (prior contact) with 
test-tadpole (Table 1; familiar = reared in contact with 
test-tadpole; unfamiliar = reared without contact with 
test-tadpole):
 Control: siblings with prior contact vs. siblings 
with prior contact. All tadpoles from the same spawn 
and reared together in one container.  We expect no 
difference in tadpole preference to aggregate with either 
group.
 experiment 1: siblings with prior contact vs. non-
siblings without prior contact. Test tadpoles reared 
without prior contact with non-siblings. One stimulus 
group formed by tadpoles from the same spawn reared 
together with test-tadpoles. The other stimulus group is 
formed by non-siblings of the test tadpole. Through this 
experiment we tested if the tadpoles of these species 
prefer to associate with siblings than non-siblings.
 experiment 2: siblings with prior contact vs. non-
siblings with prior contact. Siblings and non-siblings 
reared in the same container, separated by a plastic net. 
One stimulus group formed by siblings reared together 
with test-tadpoles. The other stimulus group formed 
by non-siblings reared with chemical and visual contact 
of test tadpole. Through this experiment we tested if 
the contact between siblings and non-siblings during 
development influences association choice to one of the 
groups by test tadpoles.
 experiment 3: siblings without prior contact vs. non-
siblings without prior contact. Test tadpoles from the 
same spawn reared separately (isolated). One stimulus 
group formed by tadpoles from the same spawn as test-
tadpoles. The other stimulus group formed by tadpoles 
from a different spawn of test-tadpole. Through this 
experiment we tested if the lack of prior contact with 
other tadpoles influences in test-tadpole choice. 
 experiment 4: siblings with prior contact vs. siblings 
without prior contact. Test tadpoles reared without prior 
contact with non-siblings. One stimulus group formed by 
tadpoles reared together with test-tadpoles. The other 

stimulus group formed by siblings of test tadpole reared 
in another container. Through this experiment we tested 
if familiarity is required to sibling association. 
 Data consisted of differences between the time 
spent by the test-tadpole in the compartments located 
near stimulus groups 1 and 2. The differences between 
time spent by test-tadpoles near each stimulus group, 
as well as the mean of differences and the pseudo 
median of differences, when negative, indicate a longer 
time spent by tadpoles near stimulus group 2, whereas, 
when positive, they indicate a longer time spent by 
tadpoles near stimulus group 1.  We verified if data of 
each experiment corresponded to normal distribution 
by Shapiro-Wilk test.  We used a paired t-test to analyse 
data of Control, and experiments 1 and 4 with R. icterica 
tadpoles and in Control, experiments 2, 3 and 4 with R. 
ornata; and Wilcoxon signed-rank test to analyse data 
of experiments 2 and 3 with R. icterica and experiment 
1 with R. ornata. Tests were two-tailed. Analyses were 
performed in R platform (R Core Team, 2017).

ReSUlTS

Data varied more for R. ornata than R. icterica, but all 
experiments for both species exhibited random pattern 
or non-significant differences between the time spent 
by tadpoles close to siblings or non-siblings (Figs. 2 and 
3). In Experiment 1 with R. ornata, tadpoles remained 
considerably longer near non-siblings, but the difference 
was not significant. Results of experiments 2 and 3 
further confirm this pattern. 
 In the Control, experiments 1 and 4 with R. icterica 
and in the Control, experiments 2, 3 and 4, with R. 
ornata, the mean of differences did not differ (Tables 2 
and 3).  Similarly, in experiments 2 and 3 with R. icterica 
and in experiment 1 with R. ornata, the pseudomedian of 
differences did not differ (Tables 2 and 3).  These results 
indicate that regardless of previous contact with siblings 
the tadpoles of Rhinella icterica and Rhinella ornata do 
not exhibit spatial attraction to siblings. This suggests that 
kinship in these tadpoles is not relevant for aggregation 
behaviour.

DiSCUSSiOn

Tadpoles of Rhinella icterica and R. ornata may aggregate 
in response to factors other than sibling association. Other 
stimuli to aggregate can be related with reduction of 

experiment Stimulus group 1 Tested tadpole Stimulus group 2

Control familiar siblings 1st rearing method familiar siblings
1 familiar siblings 1st rearing method non-familiar non-siblings
2 familiar siblings 2nd rearing method familiar non-siblings
3 non-familiar siblings 3rd rearing method non-familiar non-siblings
4 Familiar siblings 1st rearing method non-familiar siblings

Table 1. Synthesis of association and recognition tests. Familiar = tadpoles reared in contact with tested tadpole; non-
familiar = tadpoles reared without contact with tested tadpole
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Ci (95 %)

experiment Shapiro-Wilk test Paired-t test (t)  
or Wilcoxon (V)

mean of differences Pseudomedian 
of differences

inf. lim Sup. lim.

Control W = 0.97 
p = 0.58

t = -0.98 ; df = 31; 
p= 0.33

-159,68 - -490.68 171.3

1 W = 0.97 
p = 0.72

t = 0.44 ; df = 31; 
p= 0.66

44,8 - -162.26 252.01

2 W = 0.89 
p = 0.003

t = 348 ; df = 31; 
p= 0.12

- 111 -36 235

3 W = 0.88 
p = 0.002

t = 295 ; df = 30; 
p= 0.36

- 87.63 -110 273

4 W = 0.96 
p = 0.37

t = 0.11 ; df = 31; 
p= 0.91

11.31 - -195.11 217.73

Table 2. Statitstic tests results for each experiment with Rhinella icterica tadpoles. df = degrees of freedom; CI = confidence 
interval

Ci (95 %)

experiment Shapiro-Wilk test Paired-t test (t)  
or Wilcoxon (V)

mean of differences Pseudomedian 
of differences

inf. lim Sup. lim.

Control W = 0.96 
p = 0.47

t = 1.08; df = 31; 
p = 0.28

154.37 - -135.44 444.19

1 W = 0.91 
p = 0.01

V = 160; df = 31; 
p = 0.052

- -408.5 -853 1

2 W = 0.93 
p = 0.059

t = 1.49; df = 31; 
p = 0.14

270.68 - -97.81 639.19

3 W = 0.95 
p = 0.18

t = -0.60; df = 31; 
p = 0.55

-111.31 - -488.86 266.24

4 W = 0.94 
p = 0.07

t = 1.09; df = 31; 
p = 0.28

164.68 - -141.92 471.30

Table 3. Statitstic tests results for each experiment with Rhinella ornata tadpoles. df = degrees of freedom; CI = confidance 
interval

Figure 2. Box plot with dots, representing experiments 1, 
2, 3, 4 and control executed with Rhinella icterica tadpoles. 
In each plot, points correspond to the difference between 
time spent by tested tadpole in each trial close to stimulus 
group 1 and 2. Positive values correspond to a longer time 
spent by test-tadpole close to stimulus group 1, while 
negative values correspond to a longer time spent by the 
test-tadpole close to stimulus group 2.

Figure 3. Box plot with dots, representing experiments 1, 
2, 3, 4 and control executed with Rhinella ornata tapoles. 
In each plot, points correspond to the difference between 
time spent by tested tadpole in each trial close to stimulus 
group 1 and 2. Positive values correspond to a longer time 
spent by the test-tadpole close to stimulus group 1, while 
negative values correspond to a longer time spent by the 
test-tadpole close to stimulus group 2.
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predation risk and response to predator cues (Watt et al., 
1997), thermotaxy (Wassersug, 1973), facilitating access 
to food particles (as in tadpoles of Rhinella pombali; 
Eterovick, 2000), and reinforcement of aposematism 
(Wassersug, 1981).
 Because there is very little information about larval 
ecology and schooling of these species, information from 
genetically similar species may help explain the absence 
of sibling attraction in these species. In Rhinella marina, 
which belongs to the same group as R. icterica (Maciel 
et al., 2010), there was a weak tendency of association 
with siblings (Raven et al., 2017). In tests of choice 
between a siblings group and an empty compartment, 
tested tadpoles spent significantly more time near sibling 
group, whereas when submitted to choice between non-
siblings and an empty compartment, tested tadpoles 
exhibited a random distribution. However, in a third test 
tadpoles failed to discriminate between siblings and 
non-siblings. In combination with the results of other 
experiments, they conclude that tadpoles of R. marina 
aggregate in response to abiotic factors such as light 
levels, temperature and structural complexity.
 Although kin recognition among tadpoles occurs in 
several bufonids (e.g., Waldman, 1981, 1982; O'Hara & 
Blaustein, 1982; Saidapur & Girish, 2000; Gramapurohit 
et al., 2006; Eluvathingal et al., 2009), species of Rhinella 
do not discriminate kin (Raven et al., 2017; present 
study). In tadpoles of other anuran families, presence 
of this behaviour is also variable even within the same 
genus, such as Lithobates (Ranidae; Waldman, 1984; 
Fishwild et al., 1990) and Spea (Scaphiopodidae; Pfennig, 
1990; Hall et al., 1995).
 Tadpoles of two bufonid species, (Anaxyrus 
americanus and A. boreas) recognise siblings when it 
was reared only with siblings, but not when it was reared 
with siblings and non-siblings together (Waldman, 1981; 
O'Hara & Blaustein, 1982). In the present study the 
results were similar for both R. icterica and R. ornata even 
with different rearing methods, indicating that previous 
contact does not influence the choice of aggregation 
with more or less related tadpoles. In Experiment 4, 
results were also similar for both species: tadpoles were 
randomly distributed, indicating that prior contact is not 
an important factor to sibling association in tadpoles of 
these species.
 The absence of kin recognition in tadpoles of R. 
icterica and R. ornata suggests that kinship is less 
important than environmental factors in the aggregation 
behaviour. However, even with the presence of 
recognition, the decision of which action to take is often 
context-dependent, in other words, it is expected that an 
action (attraction or repulsion) will only occur whether 
its cost does not exceed the benefits (Waldman, 1987, 
1988; Reeve, 1989). 
 For some authors the absence of sibling discrimination 
among tadpoles in laboratory tests is due to absence of 
stimuli to aggregation behaviour (Blaustein et al., 1993). 
When there are few selective pressures that lead to 
aggregation, sibling association tend to be weak, because 
tadpoles get few benefits from this behaviour (Blaustein 
and O’Hara, 1986).

 Both recognition processes and schooling may vary 
within the same species depending on some factors, 
such as presence and density of predators (Wrona, 1991; 
Fitzgerald, 1992; Watt et al., 1997), diets (Gamboa et 
al., 1990; Pfennig, 1990), development stage (Blaustein 
& O’Hara, 1986; Rautio et al., 1991; Blaustein et al., 
1993; Nicieza et al., 1999), resource distribution, and 
temperature variation (Hokit & Blaustein, 1997). For 
example, Lithobates sylvaticus tadpoles recognised and 
were attracted to relatives in laboratory experiments, 
but in natural environments they demonstrated both 
attraction and repulsion to relatives in different ponds 
(Waldman, 1984; Halverson et al., 2006). 
 Our experiments controlled most environmental 
variables that could influence spatial preference by 
tadpoles, thus focusing only on presence or absence of 
kin recognition traits. Therefore, the lack of attraction 
to siblings by these tadpoles could be due to a lack 
of stimulus and selective pressures for schooling 
behaviour. Another explanation could be that the 
recognition mechanisms in these species act in high 
levels, as conspecifics groups. Polettini Neto & Bertoluci 
(2021) found that tadpoles of Rhinella icterica have 
preference to associate with conspecifics, while tadpoles 
of R. ornata do not show any discrimination between 
conspecifics and heterospecifics.  Our results can be used 
as a start point to better understand tadpole aggregation 
behaviour and recognition mechanisms in these species, 
and more information on larval ecology of these species 
will contribute for more accurate interpretations of these 
behaviours. 
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