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INTRODUCTION

Terrestrial lungless salamanders (Plethodontidae) are 
an integral component of many forested ecosystems. 

In the eastern United States, terrestrial salamanders are 
often abundant (Bailey et al., 2004; Dodd & Dorazio, 2004), 
with recent density estimates of up to 5.26 individuals/
m2 (Hernández-Pacheco et al., 2019). Thus, terrestrial 
salamanders can play an important role in the top-down 
regulation of invertebrate populations (Hairston, 1987; Davic 
& Welsh, 2004; Walton et al., 2006; Semlitsch et al., 2014). 
In turn, terrestrial salamander populations can influence the 
rate of detritus and leaf litter decomposition (Wyman, 1998; 
Hickerson et al., 2017), which regulates the amount of CO2 
released from forest floors into the atmosphere each year 
(Wyman, 1998).
	 Salamanders typically employ a euryphagous feeding 
strategy (but see Paluh et al., 2015), where the diversity, 
amount, and frequency of prey acquired is directly dependent 
on the spatial and temporal availability of prey in the 
salamander’s microhabitat (Jaeger, 1981).  Numerous studies 
have examined the diets of large (i.e., adult snout-vent-
length, SVL > 60 mm), terrestrial, eastern North American 
plethodontid salamanders (i.e., Oliver, 1967; Rubin, 1969; 
Whitaker & Rubin, 1971; Powders & Tietjen, 1974; Jensen 
& Whiles, 2000; Lewis et al., 2014; Hutton et al., 2017). 
However, the diets of most small (i.e., adult SVL < 60 mm) 
North American Plethodon species are unknown or poorly 
studied. Furthermore, the majority of previous Plethodon 
dietary studies only identified prey items to the taxonomic 
level of order and only provided percent occurrence or raw 
numerical count data. While this dietary information can be 
useful, identification of prey to the lowest taxonomic level, 
along with estimates of individual prey volumes, can provide 
researchers with the data resolution necessary to examine 
specific differences in ontogenetic, seasonal, and inter-
species diet composition. 

	 Plethodon richmondi (southern ravine salamander) is 
a small (less than 138 mm total length, TL; Petranka, 1998) 
terrestrial lungless salamander with a broad distribution in 
eastern Kentucky, northern North Carolina, north-eastern 
Tennessee, western Virginia, and southern West Virginia. The 
species is commonly found under flat rocks, damp rotting 
logs, and in leaf litter on rocky wooded slopes in tracts of 
mature forest.  In Kentucky, these animals are generally active 
on the forest floor during periods of damp, mild weather 
from fall through spring and they are particularly abundant 
on the forest floor from March through May.
	 In this study, we examined the spring (March - May) diet 
of P. richmondi, from a second growth forest in south-eastern 
Kentucky. We used a non-lethal gastric lavage technique to 
identify stomach contents to the lowest possible taxonomic 
resolution, with these data we have been able to report 1) 
the first description of P. richmondi diet, and 2) evaluate the 
importance of prey groups/types to the overall diet. 

MATERIALS & METHODS

Our study area was located in the University of Kentucky’s 
Robinson Forest (RF), a 5983 ha experimental forest located 
in the interior rugged section of the Cumberland Plateau 
in Breathitt and Knott Counties, Kentucky USA. Robinson 
Forest is a 90-year-old, second growth forest with vegetation 
consisting of typical, mixed mesophytic forests of the region; 
dominant tree species included white oak (Quercus alba), 
tulip tree (Liriodendron tulipifera), Eastern hemlock (Tsuga 
canadensis), and chestnut oak (Quercus prinus) (for more 
details, see Phillippi & Boebinger, 1986). 
	 In the spring (March-May) of 2016 and 2017, P. richmondi 
were located by sifting through dense leaf litter, as well as by 
turning over logs, rocks, and other cover objects near first-
order streams. Upon capture, the salamanders were placed 
in individual containers and brought back to the dry lab at RF 
for processing. Salamanders were anesthetised in a solution 
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of 1 g Maximum Strength Orajel®/1 liter of aged tap water 
(Cecala et al., 2007). They were removed from the solution 
when they could no longer right themselves after being 
flipped over.  Then to obtain their stomach contents the 
salamanders were subjected to a non-lethal gastric lavage 
technique (Fraser, 1976a; Hantak et al., 2016; Hutton et al., 
2017). Salamanders were placed on their dorsum on a folded 
paper towel, and an approximately 6.0 cm long piece of 
water-lubricated tubing (1.3 mm OD PTFE tubing were used, 
Zeus Inc., catalog number AWG24) was slowly inserted into 
the esophagus until there was resistance. Distilled water was 
then pumped (Nipro® 3 mL syringes with 22-gauge needles) 
into the tubing.  As in previous studies, salamander stomachs 
were pumped at least two additional times after the last prey 
item was extracted to verify removal of all contents (Cecala et 
al., 2007; Bondi et al., 2015). After lavage, each salamander 
was measured for snout-vent length (SVL: from the tip of the 
snout to the posterior angle of the vent) and total length (TL: 
from tip of the snout to the tail’s terminus) to the nearest 
0.01 mm with a digital caliper, and mass to the nearest 0.1 
g with a digital scale. If possible, sex was determined based 
on the presence of mental glands in males, or eggs visible 
through the abdominal walls in females. Salamanders were 
then placed in a recovery container of aged tap water until 
they could right themselves and responded to tapping, which 
took approximately 15 minutes. Salamanders were returned 
to their exact location of capture within 1.5 h.
	 Stomach contents were retained on the paper towels 
and immediately identified to family, genus, and species, 
if possible, using a dissecting microscope along with 
appropriate keys and guides (Peckarsky, 1990; Merritt & 
Cummins, 1996; Fisher & Cover, 2007; Bradley, 2012; Evans, 
2014). Additionally, invertebrate life stage (larval or adult) 
was reported, if applicable. The individual prey items were 
then grouped based on order/class and life stage. 
	 To calculate prey volume, we measured the length and 
width of each prey item to the nearest 0.01 mm using a 
digital caliper and estimated volume as a prolate spheroid 
using the equation (Dunham, 1983):

	 The relationship between individual P. richmondi size (i.e., 
mass, SVL, and TL) and total consumed prey volume were 
analyzed using individual linear regressions in the statistical 
program R (Version 3.4.3). The Shapiro-Wilk test was used to 
assess the normality of the data residuals. Salamander size 
(SVL and TL) were log-tranformed to meet the normality 
assumption of linear regression. 

	 Relative occurrence (RO) of each prey group was 
calculated using the equation:

RO = (P*100)/T

	 where P is the total number of occurrences of a given 
prey type, and T is the total number of prey items recovered 
(Loveridge & Macdonald, 2003).

	 Individual prey volumes and RO were used to calculate 
importance values (Ix) for each prey group (Holomuzki, 1980; 
Davic, 1983). Specifically, Ix values estimate the relative 
weight of importance of a particular prey type or group to 
the overall diet in the animals sampled. To estimate group Ix 
values, the volumetric and relative occurrence (RO) data of 
each prey item and type are calculated. Importance values (Ix 
), ranging from 0 to 1, were calculated for each prey group/
type using the equation (Powell et al., 1990; Anderson & 
Mathis, 1999):

	 Where nx, vx, and fx represent the number of a prey type, 
the volume of the prey type, and frequency or the number 
of stomachs containing that prey type, respectively, and N, 
V, and F represent their sums across all prey types (Hantak 
et al., 2016). These importance values were used to compare 
the overall importance of a particular prey group/type to the 
overall diet of P. richmondi. After processing, prey samples 
were placed into individually labeled vials containing 70 
% ethanol.  Samples are stored in the Branson Museum 
collection at Eastern Kentucky University, Richmond, 
Kentucky.

RESULTS

We stomach flushed a total of 31 P. richmondi, SVL ranged 
from 20.00–57.20 mm (mean ± SD = 40.86 ± 7.93), TL ranged 
from 38.54–101.07 mm (mean ± SD = 76.46 ± 17.33), and 
mass ranged from 0.1–1.2 g (mean ± SD = 0.75 ± 0.31). 
Overall, 14 individuals were identified as adult females, 3 
were reproductive males, and 14 were of unknown sex. All 
individuals had at least one prey item in their stomachs. We 
recovered a total of 452 prey items, and on average, individuals 
contained 14.6 ± 10.1 prey items in their stomachs. We found 
no relationship between total consumed prey volume and 
salamander mass (R2 = -0.028; P = 0.683), SVL (R2 = -0.034; P 
= 0.891), or TL (R2 = 0.013; P = 0.249).
	 Overall, we found 49 distinct prey types from 14 
invertebrate prey groups. These results are summarised in 
Figure 1 and shown in detail in Supplementary Materials 
(Table S1). The three most important prey (Ix), which made 
up 62% of the overall importance (1.519 of 2.419 total Ix) and 
82% of the total prey occurrence, were Formicidae (ants: Ix = 
0.659, RO = 29.20%), Acari (mites/ticks: Ix = 0.514, RO = 28.76 
%), and Collembola (springtails: Ix = 0.346, RO = 24.56 %; Fig. 
1, Table S1). 
	 Among the ants, prey from the genus Pheidole contributed 
to approximately 50 % of both the overall Formicidae Ix 

and RO. Pheidole also comprised 12 % of the overall prey 
importance and 15.3 % of all prey items consumed. Mites 
from the superfamily Galumnoidea, were the most important 
and frequent among the Acari (34 % and 42 %, respectively), 
comprising 7.1 % of the overall prey importance and 12 % of 
all prey items. Lastly, springtails from the family Isotomidae, 
were the most important and frequent among the Collembola 
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(62 % and 55 %, respectively) and comprised 8.9 % of the 
total prey importance and 13.5 % of all prey items. 
	 Arachnids (Acari, Araneae, and Pseudoscorpiones) 
accounted for approximately 30 % of all prey importance 
and occurrence. Aranae were found to be the fourth most 
important prey group (Ix = 0.178) in terms of volumetric 
importance (i.e.,Ix), although they only comprised 3.5 % of all 
prey items.  Unfortunately, many of the spiders could not be 
identified further than order due to advanced digestion, but 
of those that could be identified, most were either cobweb 
(Theridiidae) or ground (Gnaphosidae) spiders. The fourth 
most common prey were gastropods (snails) and comprised 
4.2 % of all prey and were the fifth most important group (Ix = 
0.170).  Overall, larval prey comprised Coleoptera (beetles), 
Diptera (flies), and Lepidoptera (moths), accounted for 8.4 % 
of the total importance and just 3.5 % of all prey items.

DISCUSSION

This is the first study to describe the spring diet of P. richmondi 
and calculate individual prey group importance values. We 
reported the importance values for 14 prey groups to adult 
P. richmondi from a population in Kentucky to the taxonomic 
level of family, genus, and species, and our data demonstrate 
that P. richmondi spring diet is primarily composed of adult-
staged, terrestrial invertebrates, with Formicidae, Acari, and 
Collembola being the three most volumetrically important 
and frequently consumed prey. 
	 We found ants to be both the most important and 
numerous prey (Ix = 0.659, RO = 29.20 %) consumed by P. 
richmondi. Previous studies have similarly reported ants 
as one of the most important prey groups in many eastern 
North American Plethodon (Cochran, 1911; Duellman, 1954; 
Oliver, 1967; Rubin, 1969; Whitaker & Rubin, 1971; Powders 
& Tietjen, 1974; Hall, 1976; Fraser, 1976b; Camp & Bozeman, 
1981; Bailey, 1992; Bellocq et al., 2000; Jensen & Whiles, 
2000; Milanovich et al., 2008; Lewis et al., 2014; Paluh et 
al., 2015; Hantak et al., 2016; Hutton et al., 2017). King et 
al. (2013) estimated that ants can account for more than 95 
% of the macroinvertebrate population in eastern temperate 
hardwood forests.  Thus, the general importance of ants to 

Plethodon species is likely a result of their abundance and 
availability in salamander microhabitats relative to other 
potential invertebrate prey.
	 We identified ants in the spring diet of P. richmondi from 
nine species/genera, with members of Pheidole and Lasius 
comprising 53 % and 23.5 % of all ants, respectively. Similar 
to our results, Hutton et al. (2017) reported 12 species/
genera of ants in the south-eastern Kentucky spring diet 
of P. kentucki, 43 % were Pheidole and 24 % were Lasius. 
Unsurprisingly, studies conducted outside of Kentucky or in 
other seasons have produced somewhat different results.  
Paluh et al. (2015) reported ants in the north-eastern Ohio 
fall (September and October) diet of P. cinereus from ten 
species/genera with Aphaenogaster picea, followed by 
two species from the genus Lasius comprising the majority 
of ants consumed. Lewis et al. (2014) reported ants in the 
south-western North Carolina summer diet of P. shermani 
from ten species/genera with Aphaenogaster comprising up 
46 % of the ant prey and 27 % of all prey items consumed. In 
our study, Aphaenogaster comprised only 0.8 % of the ants 
consumed by P. richmondi. Differences in regions, sampling 
seasons, species distributions, species assemblages, and 
microhabitats are likely responsible for the observed 
differences in the species of ants in the diets of these eastern 
Plethodon salamanders.
In this study, Acari (mites) were found to be the second-most 
important and frequently consumed prey group (Ix = 0.514, 
RO = 28.76 %). Despite their importance in P. richmondi, 
Duellman (1954) reported only three mite prey items in 
the diet of the closely related P. electromorphus. Acari have 
been found to feature prominently in the diets of P. amplus, 
P. glutinosus, and P. wehrlei (Rubin, 1969; Hall, 1976) and 
have been reported as the second-most consumed prey in P. 
jordani, P. serratus, and P. websteri (Powders & Tietjen, 1974; 
Camp & Bozeman, 1981). Numerous studies throughout 
the eastern range of P. cinereus, have also reported Acari to 
comprise a large portion of their diet (Cochran, 1911; Maglia, 
1996; Bellocq et al., 2000); specifically, Hantak et al. (2016) 
found Acari to comprise 26 % of the diet of this species. 
Similarly, Hutton et al. (2017) reported Acari in 27% of P. 
kentucki diets. It is uncertain if seasons, species assemblages, 
and or microhabitat are responsible for the variation of Acari 
in the composition of the diet. 
	 We found Collembola (springtails) to be the third-most 
important and frequently consumed prey group (Ix = 0.346, 
RO = 24.56 %) in the diet of P. richmondi. In the diet of P. 
electromorphus, Duellman (1954) reported Collembola 
to constitute just 2 % of the diet. However, Collembola 
(springtails) have been reported to constitute a significant 
portion of diet in Plethodon (Cochran, 1911; Fraser, 1976a; 
Powders & Tietjen, 1974; Camp & Bozeman, 1981; Jensen 
& Whiles, 2000; Bellocq et al., 2000). Specifically, Hantak et 
al. (2016) found Collembola to comprise 17 % of the dietary 
importance in P. cinereus and Hutton et al. (2017) reported 
Collembola in 42 % of P. kentucki stomachs and comprised 
10% of all prey. In addition to differences in Acari and 
Collembola in the diet of P. electromorphus and P. richmondi, 
Duellman (1954) reported that Isopoda (isopods) were the 
second-most abundant prey, however, we failed to detect 
isopods in any P. richmondi. Overall, the differences in the 
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Figure 1. Prey groups found as stomach contents in Plethodon 
richmondi (n=31), expressed as percent relative occurrence, from 
south-eastern Kentucky (USA) from March-April 2016 and 2017
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diet compositions between these two closely related species 
are likely due to the influence of sampling season and site 
conditions on invertebrate prey diversity, abundance, and 
availability.
	 Plethodon richmondi is a euryphagous salamander 
that during spring time consumes a diverse assemblage 
of primarily mid-sized, terrestrial, adult invertebrates, 
principally consisting of Formicidae, Acari, Collembola, 
Araneae, and Gastropods.  Additional studies should prioritise 
evaluating the diet of P. richmondi during other times of the 
year. Further, the non-lethal gastric lavage technique should 
be used to examine the diets of other small Plethodon 
salamanders to identify prey to the lowest taxonomic level 
and so better understand the role of these salamanders in 
the regulation of invertebrate communities. These studies 
should include the estimation of prey volumes to allow for 
the calculation of importance values, which can be used to 
make a more discerning examination of spatial and temporal 
variation in salamander diets among species, age groups, and 
between sexes.
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