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It is well known that geographic variation in morphological traits occurs among populations of lizard species. In this study, we 
analysed body size and sexual size dimorphism among four populations of the lizard Sceloporus variabilis from contrasting 
elevations. Males from all populations were larger than females in snout-vent length, head length, head width, tibia length, 
and forearm length. These findings are consistent with the hypothesis that sexual selection acts more strongly on males than 
on females. Females from higher elevations were larger in size than those found at lower elevations, which could be explained 
by an increased investment in body size to maximise reproductive success. We suggest that environmental (precipitation, 
temperature) and ecological (food, competition, predation) factors influence the expression of sexual dimorphism and 
morphological variation in S. variabilis.
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INTRODUCTION

A range of ecogeographical rules governing the size of 
males and females have been developed to explain 

geographic variation among species and populations 
(Cox et al., 2003; Schäuble, 2004). In amphibians and 
fishes, females are generally the larger sex (Liao et al., 
2013; Jonsson & Jonsson, 2015), while in mammals, 
birds, and reptiles, males tend to be larger (Kratochvíl 
& Frynta, 2006). Sexual dimorphism can be observed 
in a wide range of morphological traits, such as body 
size, head length and limbs length (Darwin, 1871; Polák 
& Frynta, 2010), and can be related to environmental 
gradients such as altitude and latitude, and the use and 
availability of resources such as microhabitats and food 
(Madsen & Shine, 1993; Roitberg, 2007; Ramírez-Bautista 
et al., 2014). In general terms, Bergmann´s rule predicts 
that body size increases with latitude (Blackburn et al., 
1999), and Rensch´s rule establishes that sexual-size 
dimorphism increases with latitude when males are the 
larger sex, decreasing when females are larger (Abouheif 
& Fairbairn, 1997). In reptiles such as lizards, Bergmann´s 
rule has been tested in a large number of taxa, whereas 
fewer case studies exist for Rensch´s rule (Angilletta et 
al., 2004; Cruz et al., 2005; Kratochvíl & Frynta, 2006; Cox 
et al., 2007). 
 Lizards can exhibit high variation in sexual size 
dimorphism, which has been reported as male-biased 
(e.g., Tropiduridae, Teiidae: Brandt & Navas, 2013), 
female-biased (e.g., Pygopodidae, Diplodactylidae: 
Read, 1999; Cox et al., 2009), and absent (e.g., Anguidae, 

Gekkonidae, Scincidae: Cox et al., 2009). Male-biased 
dimorphism is generally linked to sexual selection, 
with large males being an advantage during male-male 
competition for territories and access to females, whereas 
female-biased dimorphism can be explained by higher 
fecundity of larger females (Endler & Houde, 1995; Braña, 
1996; Cox et al., 2009). Sexual size dimorphism in lizards 
can further arise from intraspecific niche divergence, 
enabling each sex to use different resources such as 
food and microhabitats (Rand, 1967; Schoener, 1967; 
Cox et al., 2003; Hierlihy et al., 2013). Size dimorphism 
is also influenced by the environment and is for example 
evidenced by oviparous species, for which females are 
generally larger at higher latitudes or altitudes, leading to 
larger clutches with bigger eggs compared to females at 
lower latitudes or altitudes (Forsman & Shine, 1995; Du 
et al., 2005).
 Sexual-size dimorphism has been assessed in a range 
of lizard taxa (e.g. Braña, 1996; Ramírez-Bautista et al., 
2006; Cox et al., 2007; Aguilar-Moreno et al., 2010; 
Hierlihy et al., 2013), including comparisons between 
populations within species (Hernández-Salinas et al., 
2010; Jin et al., 2013; Ramírez-Bautista et al., 2014). 
The genus Sceloporus (Phrynosomatidae) currently 
comprises almost 100 species, occurring in a wide range 
of habitats and largely being characterised by a marked 
male-biased sexual-size dimorphism in line with male-
male competition (Fitch, 1978; Ansell et al., 2014; Leaché 
et al., 2016). Differences in sexual size dimorphism 
among Sceloporus species can be attributed to habitat 
differences, variation in predation pressure, and lack of 
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territoriality or interspecific competition (Wiens, 1999; 
2001),  and can also be reflected in differential head 
length, head width, forearm length and tibia length 
between the sexes (Ramirez-Bautista & Pavón, 2009; 
Ramírez-Bautista et al., 2013).
 Sceloporus variabilis shows a wide geographic 
distribution across tropical and temperate regions 
(Mendoza-Quijano et al., 1998), but little is presently 
known about morphological variation between and 
among populations. Previous evidence from local 
studies suggests a male-biased sexual-size dimorphism 
(Benabib, 1994; Ramírez-Bautista et al., 2006), but data 
from different environments are as yet lacking. Thus, 
the aim of the present study is to quantify body size and 
sexual-size dimorphism in four populations S. variabilis 
from different elevations (see also Ramírez-Bautista et 
al., 2011). 

MATERIAL AND METHODS

Specimens were obtained from the Colección Nacional de 
Anfibios y Reptiles (CNAR) del Instituto de Biología, and 
Colección del Museo de Zoología, Facultad de Ciencias 
(MZFC), both at the Universidad Nacional Autónoma 
de México (UNAM). Additional data were obtained 
from a database held by the Laboratorio de Ecología de 
Poblaciones of the Universidad Autónoma del Estado de 
Hidalgo. The populations at high elevation were located 
at Cerro Azul, Veracruz (97° 44´N, 21° 11´O; 1, 100 m 
a.s.l., Table 1, Fig. 1) and Metztitlán, Hidalgo (98° 55´N, 
20° 38´O; WGS84; 1, 000 m a.s.l., Table 1, Fig. 1). The 
low elevation localities were at Atlapexco, Hidalgo (98° 
20´N, 21° 01´O; 140 m a.s.l., Table 1, Fig. 1) and Alvarado, 
Veracruz (95° 46´N, 18° 47´O; 50 m a.s.l., Table 1, Fig. 1; 
INEGI, 2009).
 All specimens were collected between 1986 and 2014. 
In the absence of statistical variation in morphological 
characteristics between years within populations (P > 
0.05 in all cases, detailed data not shown), the samples 
of all years were pooled for each population. Sample 
sizes were 55 specimens (Cerro Azul; 20 females and 35 
males), 116 (Metztitlán; 23 females and 93 males), 47 
(Atlapexco; 25 females and 22 males), and 355 (Alvarado; 
131 females and 224 males).

 
 
 
 
 
 
 
 
 
 

       Males were considered as adults if they had enlarged 
testes and convoluted epididymides consistent with 
sperm production. Adult females were defined by 
having vitellogenic follicles in ovaries, or eggs in oviducts 
(following Goldberg & Lowe, 1966). We measured snout-
vent length (SVL: measured to the nearest ± 0.01 mm), 
head length (HL: ± 0.01 mm; distance from the anterior 
tip of the rostral scale to the posterior margin of the left 
ear), head width (HW: ± 0.01 mm; maximum width of the 
head, measured as the distance between the posterior 
margin of the left and right ears), tibia length (TL: ± 0.01 
mm), and forearm length (FL: ± 0.01 mm; measured from 
the knee (TL) or elbow (FL) to the pad of the foot) in all 
specimens examined.
 For statistical analyses on sexual-size dimorphism, 
we used a multivariate analysis of variance (MANOVA) 
to identify differences in body size (SVL) and other 
morphological characteristics as a function of population 
origin (Zar, 1999). A Generalized Discriminant Function 
Analysis (GDFA) was performed at the sex and population 
level to test for differences between sexes and among 
populations. Significant variables identified by GDFA 
were compared between sexes and among populations 
by univariate Kruskall-Wallis or U Mann-Whitney tests. 
A correlation analysis was conducted to determine the 
relationship between morphological traits and elevation. 
Statistical analyses and post-hoc comparisons were 
performed when necessary using Statistica version 7.0, 
and means were presented ± 1 SE (Zar, 1999).

RESULTS

A MANOVA including all traits showed statistically 
significant differences between sexes (Wilk´s λ = 0.704, 
F1, 565 = 47.15, P < 0.001), among populations (Wilk´s λ 
= 0.582, F3, 565 = 22.37, P < 0.001), and in the interaction 
of both factors (Wilk´s λ = 0.872, F3, 565 = 5.23, P < 0.001). 
The same pattern occurred in other morphological 
characteristics, where males were larger than females 
(Tables 2 and 3). The degree of sexual size dimorphism 

Populations
Environmental 
characteristic

Cerro Azul, 
Veracruz

Metztitlán, 
Hidalgo

Atlapexco, 
Hidalgo

Alvarado, 
Veracruz

Elevation (m) 1100 1000 140 50

Vegetation type Secondary 
vegetation/
Coniferous 

forest

Xeric scrub Tropical 
rain forest

Evergreen 
forest

Average annual 
precipitation 

(mm)

1600 700 2000 3435-
6435

Mean annual 
temperature 

(˚C)

22 18.5 20-22 27

Table 1. Environmental parameters for each of the 
four localities sampled for sexual-size dimorphism of  
S. variabilis.

Figure 1. Populations at high (Cerro Azul, Veracruz; 
Metztitlán, Hidalgo) and low elevations (Atlapexco, 
Hidalgo; Alvarado, Veracruz) of S. variabilis analysed in 
this study.
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Trait
M

ales
Fem

ales
Alvarado 
(n=224)

Atlapexco 
(n=22)

M
etztitlán 
(n=93)

Cerro Azul 
(n=35)

H
P

Alvarado 
(n=131)

Atlapexco 
(n=25)

M
etztitlán 
(n=23)

Cerro Azul 
(n=20)

H
P

SVL (m
m

)
59.95 ± 0.37

(44.5-71)

65.6 ± 1.64

(46.49-74.82)

62.20 ± 0.70

(44-77.9)

63.1 ± 1.37

(43-75)

39.86
<0.0001

50.92 ± 0.36

(41.7-68.4)

54.10 ± 0.94

(45-66)

57.89 ± 1.38

(38.5-69.2)

54.35 ± 0.97

(48-62)

35.86
<0.0001

HL (m
m

)
15.34 ± 0.08

(10.8-18)

16.30 ± 0.34

(12.7-18.39)

15.70 ± 0.15

(11.3-18.72)

16.16 ± 0.43

(8.4-19.5)

25.26
<0.0001

13.07 ± 0.08

(10.5-16.7)

13.81 ± 0.21

(12.2-16.7)

14.77 ± 0.30

(10.79-17.62)

14.23 ±0.21

(12.8-15.7)

45.84
<0.0001

HW
 (m

m
)

10.70 ± 0.08

(7.2-14.5)

11.56 ± 0.48

(7.66-14.95)

11.25 ± 0.15

(7.75-14.7)

12.82 ± 0.34

(8.5-17.7)

41.54
<0.0001

9.05 ± 0.09

(6-13)

9.44 ± 0.31

(6.44-12.5)

8.52 ± 0.30

(6.29-11.8)

10.53 ± 0.20

(9.2-12.5)

33.71
<0.0001

FL (m
m

)
10.17 ± 0.07

(7-13.5)

11.45 ± 0.27

(8.91-13.05)

10.69 ± 0.11

(7.4-12.59)

10.01 ± 0.26

(6.4-13.5)

42.14
<0.0001

8.51 ± 0.08

(5.8-11.4)

9.44 ±0.18

(7.8-11.2)

9.37 ± 0.22

(7-11.29)

8.48 ± 0.19

(7-9.9)

30.97
<0.0001

TL (m
m

)
15.13 ± 0.09

(10.2-18.4)

17.22 ± 0.38

(13.2-20.05)

15.13 ± 0.14

(11-19.41)

16.09 ± 0.44

(7.5-19.2)

37.81
<0.0001

12.84 ± 0.08

(10.6-17.6)

13.82 ± 0.26

(11.8-16.9)

13.90 ± 0.38

(10-17.74)

13.54 ± 0.20

(12.3-16)

30.58
<0.0001

Table 2. M
ean values (± 1 SE) of m

orphological characteristics (SVL = snout-vent length, H
L = head length, H

W
 = head w

idth, FL = forearm
 length, and TL = tibia length) of adult m

ales 
and fem

ales of S. variabilis from
 populations at Veracruz (Alvarado and Cerro Azul), and H

idalgo, M
exico (Atlapexco and M

etztitlán). Results of Kruskal-W
allis, testing differences by sex 

am
ong populations.

Table 3. M
ean values (± 1 SE) of m

orphological characteristics (SVL = snout-vent length, H
L = head length, H

W
 = head w

idth, FL = forearm
 length, and TL = tibia length) of adult m

ales and 
fem

ales of S. variabilis from
 populations at Veracruz (Alvarado and Cerro Azul), and H

idalgo (Atlapexco and M
etztitlán), M

exico. * = P < 0.01, the rest w
as P < 0.001, by U

 M
ann-W

hitney 
test.

Trait
Alvarado

Altapexco
M

etztitlán 
Cerro Azul

M
ales (n=224)

Fem
ales (n=131)

M
ales (n=22)

Fem
ales (n=25)

M
ales (n=93)

Fem
ales (n=23)

M
ales (n=35)

Fem
ales (n=20)

SVL (m
m

)
59.95 ± 0.37

(44.5-71)

50.92 ± 0.36

(41.7-68.4)

65.6 ± 1.64

(46.49-74.82)

54.10 ± 0.94

(45-66)

62.20 ± 0.70

(44-77.9)

57.89 ± 1.38

(38.5-69.2)*

63.1 ± 1.37

(43-75)

54.35 ± 0.97

(48-62)

HL (m
m

)
15.34 ± 0.08

(10.8-18)

13.07 ± 0.08

(10.5-16.7)

16.30 ± 0.34

(12.7-18.39)

13.81 ± 0.21

(12.2-16.7)

15.70 ± 0.15

(11.3-18.72)

14.77 ± 0.30

(10.79-17.62)

16.16 ± 0.43

(8.4-19.5)

14.23 ± 0.21

(12.8-15.7)

HW
 (m

m
)

10.70 ± 0.08

(7.2-14.5)

9.05 ± 0.09

(6-13)

11.56 ± 0.48

(7.66-14.95)

9.44 ± 0.31

(6.44-12.5)*

11.25 ± 0.15

(7.75-14.7)

8.52 ± 0.30

(6.29-11.8)

12.82 ± 0.34

(8.5-17.7)

10.53 ± 0.20

(9.2-12.5)
FL (m

m
)

10.17 ± 0.07

(7-13.5)

8.51 ± 0.08

(5.8-11.4)

11.45 ± 0.27

(8.91-13.05)

9.44 ± 0.18

(7.8-11.2)

10.69 ± 0.11

(7.4-12.59)

9.37 ± 0.22

(7-11.29)

10.01 ± 0.26

(6.4-13.5)

8.48 ± 0.19

(7-9.9)
TL (m

m
)

15.13 ± 0.09

(10.2-18.4)

12.84 ± 0.08

(10.6-17.6)

17.22 ± 0.38

(13.2-20.05)

13.82 ± 0.26

(11.8-16.9)

15.13 ± 0.14

(11-19.41)

13.90 ± 0.38

(10-17.74)

16.09 ± 0.44

(7.5-19.2)

13.54 ± 0.20

(12.3-16)

R. Cruz-Elizalde et al.
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varied among populations. Males were 17.53%, 15.06%, 
13.87%, and 6.93% larger than females in Atlapexco, 
Alvarado, Cerro Azul, and Metztitlán, respectively. In 
females, SVL (r = 0.39, P < 0.001), HL (r = 0.45, P < 0.001), 
HW (r = 0.14, P = 0.05), and TL increased significantly 
with altitude (r = 0.27, P < 0.001), whereas FL did not (r 
= 0.12, P = 0.08). Males showed a similar pattern for SVL 
(r = 0.15, P = 0.002), HL (r = 0.13, P = 0.009), and HW (r = 
0.29, P <0.001), but not for FL (r = 0.09, P = 0.08) and TL 
(r = 0.04, P = 0.40).
 The GDFA showed that three out of the five traits 
were different between sexes, with an eigenvalue of 
F1 = 0.73 (cumulative percentage 100%): HL (Wilk´s λ = 
0.982, F1, 564 = 9.79, P < 0.001), HW (Wilk´s λ = 0.974, F1, 

564 = 14.79, P < 0.001), and TL (Wilk´s λ = 0.97, F1, 564 = 
17.43, P < 0.001). All traits differed among populations 
(SVL, Wilk´s λ = 0.98, F3, 564 = 2.78, P = 0.040; HL, Wilk´s λ 
= 0.97, F3, 564 = 4.26, P = 0.005; HW, Wilk´s λ = 0.79, F3, 564 
= 49.30, P < 0.001; FL, Wilk´s λ = 0.80, F3, 564 = 46.27, P < 
0.001, and TL, Wilk´s λ = 0.92, F3, 564 = 15.96, P < 0.001), 
with eigenvalues of F1 = 0.46 and F2 = 0.11 (cumulative 
percentage 86%).

DISCUSSION

Male-biased sexual-size dimorphism has been recorded 
in most species of Iguanidae (Fitch, 1978), Tropiduridae 
(Brandt & Navas, 2013), and Phrynosomatidae (Valdéz-
González & Ramírez-Bautista, 2002; Cox et al., 2007; but 
see also Ramírez-Bautista et al., 2013). The pattern of 
sexual-size dimorphism found for S. variabilis is largely 
consistent with Fitch´s (1978) observations across 
the genus Sceloporus, and similar to that observed in 
other  species (S. ochoterenae: Smith et al., 2003; S. 
grammicus: Hernández-Salinas et al., 2010; S. minor: 
Ramírez-Bautista et al., 2014; S. siniferus: Hierlihy et al., 
2013; Ansell et al., 2014), as well as other populations of 
S. variabilis (Ramírez-Bautista et al., 2006; Cruz-Elizalde 
& Ramírez-Bautista, 2016). The male-biased sexual size 
dimorphism observed for S. variabilis is likely governed 
by sexual selection which involves male-male aggressive 
interactions occurs during courtship and mating (see e.g. 
Ruby, 1978; Ruby & Baird, 1994 for S. jarrovi). Larger 
males with larger relative heads are favoured during 
male-male combats, resulting in higher reproduction 
success and the acquisition of more resources (Stamps, 
1983; Carothers, 1984; Hierlihy et al., 2013). In addition to 
sexual size dimorphism, male S. variabilis can also show 
brighter colouration patterns than females (Stephenson 
& Ramírez-Bautista, 2012; for similar studies on other 
Sceloporus species see Feria-Ortíz et al., 2001; Ramírez-
Bautista et al., 2002; Ramírez-Bautista & Pavón, 2009; 
Lozano, 2013). An analysis of differences in coloration in 
males from the four studied sites of S. variabilis is still 
outstanding.
 The observed effect of altitude on size is consistent 
with Bergmann´s rule, which states that body size 
increases with higher latitude and elevation and 
decreasing temperature (e.g., Gaston & Blackburn, 
2000). While Bergmann´s rule is largely followed by 
mammals and birds, it is not universally applicable to 
ectotherm vertebrates such as reptiles (e.g. Ashton 

& Feldman, 2003; Cruz et al., 2005). While to present 
study finds evidence in support of a positive relation 
between altitude and size traits in males and females, 
a higher number of populations is required to draw firm 
conclusions (see also Angilletta et al., 2004). Females 
from higher elevations were generally larger than 
those from lower elevations, similar to what has been 
observed in other oviparous lizards (e.g., Michaud & 
Echternacht, 1995; Du et al., 2014). In low temperature 
environments at high elevations and/or high latitude, 
body size can increase more distinctly with elevation and 
latitude, because lizards invest more energy in growth 
and fat storage during the harshest periods of the year 
(Michaud & Echternacht, 1995; Angilletta et al., 2004), 
promoting late maturity, larger clutch/litter sizes, bigger 
eggs, and larger offspring/neonates at birth (Jin & Liu, 
2007; Díaz et al., 2012; Du et al., 2014). A recent study 
about reproduction among populations of S. variabilis 
in Central Mexico indeed revealed differences in clutch 
size and SVL of females in three populations occurring 
at different elevations (Cruz-Elizalde & Ramírez-Bautista, 
2016). Alternative hypothesis to explain patterns of 
sexual size dimorphism are related to the differential use 
of resources, and males and females with larger heads 
are for example able to ingest larger prey items (Vitt & 
Pianka, 2007; Ngo et al., 2015). However, difference in 
prey size, microhabitat, or resource competition between 
males and females within population do not necessarily 
constitute promotors of sexual size dimorphism (Cox & 
Kahrl, 2015; see also Schoener, 1967; Butler et al., 2000).
 Further studies are needed for a better understanding 
of geographic patterns of sexual size dimorphism in S. 
variabilis, focusing on the use of resources between sexes, 
population dynamics, and male coloration. Additionally, 
differences in body size and sexual-size dimorphism 
should be assessed between species of the S. variabilis 
group, as traits such as male territoriality, clutch size, 
and body size in some cases fail to explain geographic 
variation in morphology within and among species (Cox 
et al., 2003; Frýdlová & Frynta, 2010; Ramírez-Bautista et 
al., 2013; Cox & Kahrl, 2015).
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