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Introduction

The role of coloration and colour vision in animal 
communication has been a fundamental question in 

evolutionary biology for many decades.
	 The current global amphibian crisis has resulted in 
an unprecedented rate of amphibian biodiversity loss, 
resulting in a growth of captive breeding as a conservation 
tool for amphibians (Griffiths & Pavajeau, 2008). 
Maintaining captive populations is important in terms 
of species conservation for potential reintroduction into 
the wild (Harding, Griffiths & Pavajeau, 2016).
	 One of the biggest challenges faced while keeping 
amphibians in captivity is mimicking their diet and 
nutritional needs (Livingston et al., 2014). This can 
directly impact many aspects of an individual’s ecology, 
including skin pigmentation (Brenes-Soto & Dierenfeld, 
2014). It is common to observe amphibians kept in 
captivity displaying a faded coloration in comparison to 
their wild counterparts (Brenes-Soto & Dierenfeld, 2014). 
In amphibians, skin coloration influences courtship and 
mate preference, recognition of breeding partners and 
perception of fitness, consequently affecting breeding 
success, resulting in advantages for selective females and 
for strikingly coloured males (Brenes-Soto et al., 2017).  

	 Skin colour may also inform about physiological 
conditions, such as oxidative and immune status 
(McGraw, 2005), and parasite load (Molnár et al., 
2013). Carotenoid-based colorations can be used to 
assess physiological and health status of an individual 
while coloration associated with melanin informs about 
hormonal levels and social dominance (Candolin, 2003).
	 The remarkable colour patterns displayed by many 
anuran species (Hoffman & Blouin, 2000) are also used as 
conspicuous “aposematic” indicators; warning signals to 
advertise unpalatability to potential predators (Hegna et 
al., 2013; Maan & Cummings, 2012; Ruxton et al., 2004). 
By reducing the frequency of costly encounters with 
predators, the protection that aposematism confers can 
lower the costs of otherwise risky behaviours, including 
foraging and sexual displays (Dugas et al., 2015).
	 Divergent antipredator strategies such as 
aposematism not only require integration of physiology, 
morphology and behaviour; they also alter the way 
selection acts on other suites of traits (Stankowich & 
Blumstein, 2005). It is expected that, in some scenarios, 
an increase in toxicity should also coincide with a greater 
visual contrast of the warning signal, with “nastier” 
animals “shouting loudest” (Maan & Cummings, 2012; 
Speed & Ruxton, 2007). This is because the greater risk 
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of detection and attack on highly conspicuous prey can 
be compensated for by the stronger predator deterrence 
induced by high toxicity (Darst et al., 2006). A positive 
relationship may also emerge from physiological or 
energetic trade-offs between the two traits (Blount et 
al., 2012).
	 Colour refers to a sensory experience, not an objective 
quantity, and how animals perceive this information can 
vary quite considerably according to their visual system 
and how they process colour (Maia et al., 2013). The 
vertebrate retina contains two types of photoreceptor: 
rods that function at low light levels, and cones that 
function in daylight and provide the basis for colour 
vision. Colour vision requires at least two spectrally 
distinct classes of cone cells combined with a nervous 
system that can compare the quantum catch of one class 
of cone with the quantum catch of another (Bowmaker 
& Hunt, 2006).
	 Animals have evolved their visual sensitivity to match 
aspects of their photic environment (Bowmaker & Hunt, 
2006), with modern teleosts, reptiles and birds possessing 
rods and four spectral classes of cones, each representing 
one of the five visual pigment families, giving these 
species the potential for tetra chromatic colour vision. 
In contrast, mammals, due to their nocturnal ancestry, 
have rod-dominated retinas with colour vision reduced 
to a basic dichromatic system (Bowmaker, 2015).
	 However, ‘colour’ refers to a sensory experience, not 
an objective quantity, and the realisation that animals 
can vary quite considerably in their visual system and 
how they process this information. The role of coloration 
and colour vision in animal communication has been a 
fundamental question in evolutionary biology for many 
decades (Maia et al., 2013). Colour is involved in a wide 
range of biological phenomena such as thermoregulation, 
crypsis, mimicry, communication as well as indicating 
health status of an individual (Endler, 1993; Forsman 
et al., 2002; Robertson & Rosenblum, 2009). Therefore, 
the quantification of animal colour variation is a crucial 
component of conservation and ecological studies. If 
captive animals are bred for conservation purposes and 
reintroduction is a future goal, these issues are of major 
concern. The aim of this study was to investigate if the 
captive environment is affecting the colour of golden 
mantella frogs and, if so, to quantify this difference.

Method

Ethical Approval
All the research reported is this study was approved by 
the Ethics Commission of Chester Zoo, UK, and from the 
Research Ethics Committee at the University of Salford, 
and it conforms to all regulations and laws in all relevant 
countries in relation to care of experimental animal 
subjects. To collect data from wild individuals, permission 
(through permits) was obtained from the government 
of Madagascar.  Furthermore, we can confirm, from 
our post-experimental monitoring, that no animals 
suffered any injuries, became ill or had their survivorship 
negatively affected because of this study.

Study subjects
	 The golden mantella frog (Mantella aurantiaca) is 
a critically endangered species (Vence & Raxworthy, 
2009) found only in Madagascar, with a distribution 
restricted to a fragment of forest that is under severe 
threat from mining, agriculture, timber extraction and 
over-collecting for the pet trade (Randrianavelona et al., 
2010).  According to the Amphibian Ark, ex situ assistance 
is vital for the long-term survival of the golden mantella 
frog (Johnson, 2008). This is an ideal species to test the 
effects of captivity on coloration because the species is 
naturally only one consistent orange colour.

Study sites
Mangabe area (Madagascar wild): Most breeding ponds 
for the golden mantella frogs are found in this area 
according to recent studies concerning conservation 
priority sites for mantella frogs. Also known as, the “blue 
forest”, Mangabe is a site of international biodiversity 
importance, divided between two administrative 
districts, Moramanga in the north and Anosibe An'ala 
to the south. Data sampling (15 males and 15 females) 
for this study was done in a protected area of the 
Moramanga region.

Ambatovy Mining Site (Madagascar wild): Ambatovy’s 
Mine is located within a species-rich region of 
Madagascar at the southern end of the remaining 
Eastern Forest Corridor at Moramanga region. As part 
of the Environmental Management Plan, there is a 
Conservation zone of native forest kept under pristine 
conditions by the mining company. During this study 
animals from the Conservation zone (15 males and 15 
females) were sampled.

Mitsinjo Association Captive Breeding Centre (Madagascar 
captive): Mitsinjo Association is a community-run 
conservation organisation. This is Madagascar’s first 
biosecure facility to safeguard amphibians from 
extinction, currently maintaining a genetically viable 
population of the golden mantella frog taken from the 
Ambatovy mining site (i.e., genetic founders), their 
offspring (F1) that are intended for reintroductions at 
artificially created breeding and natural ponds. Animals 
are kept in tanks with aquarium gravel as substrate, a 
potted plant, coconut shells for hiding. Animals were fed 
a variety of live invertebrates (fruit flies- Drosophila sp., 
isopods – Trichorhina sp., springtails - Collembolas).  We 
sampled 8 males and 8 females founder frogs (i.e. wild 
caught) and the same number from their F1 frogs.

Chester Zoo (UK): Chester Zoo is actively involved in the 
conservation of the golden mantella frogs in Madagascar. 
The zoo currently maintains two ex situ groups of M. 
aurantiaca, one is on public display at the Zoo’s Tropical 
Realm exhibit and a second group is kept off show in 
a biosecurity container specifically for conservation-
related research.  Animals have been in captivity for more 
than 5 generations. Animals are kept in naturalistic tanks 
with different live species of plans, moss for substrate, 
water, hiding places under rocks and UV light. Animals 
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are fed different live invertebrates (fruit flies- Drosophila 
sp., isopods – Trichorhina sp., springtails - Collembolas).  
We sampled 8 males and 8 females from the Chester Zoo 
off-show colony.

Spectrophotometric measurements
	 We used a USB-2000 portable diode-array 
spectrometer and a PX-2 xenon strobe light source (both 
from Ocean Optics, Dunedin, USA), probe positioned 
at an angle of 90˚, to perform spectrophotometric 
measurements. To exclude ambient light and standardise 
measuring distance, a cylindrical plastic tube was 
mounted on the fibre optic probe. The equipment 
allowed spectral analyses to be conducted in the 300 
and 700 nm range. Spectral reflectance measurements 
were always taken of each individual from the dorsum, 
three consecutive measurements per frog, with only 
adult frogs during breeding season used during this 
study. Colour measurements sampled the most visible 
surfaces to obtain a representative sample (within an 
individual) of the spectral shape of the entire body. 
Golden mantellas do not show any sexual dichromatism, 
allowing the use of both male and females.  Summary 
variables for the colour measurements were calculated. 
Spectralon white standard measurements were taken 
between each individual to account for lamp drift. This 
methodology was based on previous studies measuring 
colour variation in different species (Crothers, et al., 
2011; Maan & Cummings, 2008; Siddiqi et al., 2004).

Colour analyses
Colour may be described by three essential parameters: 
hue, chroma, and brightness and all three variables 
were analysed as they are customarily used in studies 
of animal coloration, thereby facilitating comparisons 
between studies. Brightness (Qt) may be defined as the 
total intensity of light (Endler, 1990). Qt was calculated 
by summing the percentage reflectance (R) across the 
entire spectrum (R300 and R700).
	 Hue represents the common  meaning of colour, for 
example, violet, blue, orange, green (Endler, 1990); In 
general, the hue of a spectrum is a function of its shape. 
Hue is correlated with the wavelength of the maximum 
slope, as well as the sign of the slope (Endler, 1990). It 
is the wavelength within the visible-light spectrum at 
which the energy output from a source is greatest Hue 
(nm) was measured as the wavelength of maximum 
reflectance.
	 Chroma is a measure of the ‘purity’ or ‘saturation’ of a 
colour and is a function of how rapidly intensity changes 
with wavelength (Endler, 1990). Chroma was calculated 
as relative medium wavelength chroma (MC, calculated 
as (Rmax – Rmin)/Qt). 
	 Brightness, hue and chroma differences between 
populations were analysed with a mixed model with 
origin (wild or captive) as fixed factors and populations 
as random factors. Data were analysed using the Pavo 
(Maia et al., 2013) package from R studio (R Studio Team 
2015). The data from each population were plotted on the 
same graph to confirm standardisation of sampling, and 
no error from the sampling design was found. Data from 

different populations were compared based on colour 
distance and colourimetric variables.   Four different 
visual systems: human, a snake (Boidae - Bowmaker, 
2015), a Scincidae lizard (New et al., 2012), representing 
potential predators, and a diurnal poison frog (D. pumilio, 
Siddiqi et al., 2004) under an ideal illumination condition, 
were used to calculate colour distance. The colour 
distance analyses in Just Noticeable Distance units (JND) 
(Wen, 2012) were used to infer if different visual systems 
would be able to notice differences between the different 
populations. In general, when JND < 1, the spectral pair 
is barely distinguishable under ideal conditions, and as 
JND becomes greater, discrimination can be made more 
rapidly and under increasingly unfavourable viewing 
conditions (Siddiqi et al., 2004). Due to the lack of data 
on golden mantella photoreceptor sensitivity, sensitivity 
data used in the analysis were those from a species with 
similar activity pattern (i.e. aposematic diurnal).

Body Condition
Body condition is a valuable index that can be assessed 
using reliable, non-invasive techniques, and it can 
identify the health condition of a population before 
any deleterious effects can be observed (MacCracken 
& Stebbing, 2012).  Body condition (BC) was assessed 
using the scaled mass index proposed by Peig & Green 
(2009).  This method is independent of size and can be 
used for comparison between different populations; 
those characteristics potentially make it superior to 
the traditional residual indices and, reportedly have 
worked well in amphibian studies (MacCracken & 
Stebbing, 2012, Michaels et al., 2014). The scaled mass 
index of condition (SMI) was calculated as follows: 

SMI = M *[SVL0/SVL]bSMA

Where M and SVL are the mass and snout-ventral length 
of the individual, SVL0 is the arithmetic mean SVL of the 
population, and bSMA is the standardised major axis 
slope from the regression of ln mass on ln SVL for the 
population (Peig & Green, 2009). Each individual SVL was 
measured (±0.01 mm) using a digital caliper (Lujii 150 
mm, Omiky)  mass was measured using a precision scale 
(accurate to 0.01 g, Smart Weigh ACC200 AccuStar). Body 
condition was calculated for each individual and groups 
were compared using an ANOVA test followed up by a 
post-hoc test.

Results

The colourimetric variables analysis showed no 
differences between wild and captive animals for 
brightness, but significant differences (p<0.0001) for hue 
and chroma were found.
	 The colour distance analyses (Table 1) showed 
that all visual systems tested would be able to detect a 
noticeable difference when comparing wild individuals 
from Mangabe and with individuals from Mitsinjo, for 
both founder and F1 generations. The individuals from 
Chester Zoo and the animals from Mangabe had a low or 
non-detectable difference in the colour distance analyses.
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	 Body condition analyses showed a significant 
difference between the groups (F=7.109, df= 7, p<0.001). 
The post-hoc analyses confirmed a significant difference 
(p<0.0001) between the Mitsinjo group and all other 
groups. Frogs kept at Mitsinjo had a significantly lower 
body condition, for both founder and F1 generations.
	 Generalised linear mixed models were used to 
evaluate the effects of body condition on the chroma, 
and hue variation.  Location was included as a random 
factor (chroma: variance 0.38, St. Dev. ± 0.62, hue: 
variance 118.13, St. Dev. ± 10.86). The selected model 
with an Akaike information criterion (AIC) of 1195.1 for 
chroma and AIC of 332.80 for hue showed that body 

condition had a strong impact on both chroma (F=7.17, 
df= 1, p<0.001) and hue (F=25.83, df= 1, p<0.001).

Discussion

In this study, we showed that different populations 
of golden mantella frogs vary in colour, most notably 
between captive and wild conditions.  In general, 
wild frogs were brighter, more colourful and were a 
different shade of orange/red in comparison to captive 
frogs, especially those from the captive populations in 
Madagascar (Fig. 1).  A relationship between lower body 
condition and duller coloration was also observed. The 

Figure 1.  Examples of skin coloration from the three groups of golden mantellas. A) Wild individuals from Mangabe; B) 
Chester Zoo off-show individuals; C) Mitisinjo F1 individuals.

Table 1.  Colour distance comparisons between golden mantella frog groups in colour distance, Just Noticeable Distance (JND)
Units. JND unit reference values: 0-1 not detectable; 1-2 Low; 2-3 Medium; 3-4 High; 4-5 Very high (Bold); >6 Extremely high 
(Bold). W = wild population; C = captive population.

Groups
Colour distance (JND units) *

Human Snake Lizard Frog

ChesterC –F1 (Mitisnjo)C 10.44 4.95 6.57 4.73

ChesterC –Founders (Mitisnjo)C 10.00 3.72 5.61 4.88

ChesterC - MangabeW 1.65 1.37 1.41 1.67

ChesterC – AmbatovyW 3.36 3.61 1.15 2.87

F1(Mitisnjo)C – Founders (Mitisnjo)C 2.62 2.38 2.44 3.09

F1(Mitisnjo)C - MangabeW 9.32 6.21 6.33 5.41

F1(Mitisnjo)C –AmbatovyW 5.10 4.75 6.28 5.13

Founders (Mitisnjo)C - MangabeW 11.91 5.62 5.76 5.82

Founders (Mitisnjo)C –AmbatovyW 7.64 4.71 4.60 5.27

MangabeW –AmbatovyW 1.32 2.78 2.52 3.55
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implication of the differences observed could be negative 
survival or lower reproductive success if captive frogs 
were to be released to the wild (Rojas, 2016).
	 The hue comparison results showed that the golden 
mantella frogs’ skin coloration has been affected by 
captivity with a significant difference when compared 
to wild conspecifics. However, during the colour 
distance analysis, the visual systems used would only 
have the ability to distinguish between animals kept at 
Mitsinjo and the other populations. The results showed 
that, even though there were significant differences 
between all populations, most of these would be low 
or non-detectable by the visual systems tested, with the 
exception of the Mitsinjo colony.  Both founders and F1 
frogs at Mitsinjo presented a coloration that differed 
significantly from their wild counterparts.  This shows 
that the change in the skin coloration is not a generalised 
effect of captivity, since frogs kept at Chester Zoo did not 
display such a dramatic change.
	 Results showed that the individuals kept at the 
Mitsinjo breeding centre had a much lower body 
condition that any other group.  Body condition is a result 
of many variables including nutritional status, stress 
levels, and abiotic variables (MacCracken & Stebbings, 
2012). Replicating diverse diets in captivity creates a 
range of challenges including issues of environment, 
economics and practicality of insect husbandry (the 
main food item - Livingston et al., 2014). Animals tend 
to have nutritional imbalances, due to deficiencies of 
one or several nutrients; for example, low quantities of 
carotenoids (which are known to affect frog coloration) 
are common in commercially-reared insects (Finke, 
2015). 
	 A relationship between body condition and loss of skin 
coloration was also detected; animals with lower body 
condition also had a greater difference in skin coloration 
according to the colour distance analyses. Animal 
coloration is a product of different variables, including 
pigments obtained from the diet, such as carotenoids. 
Dietary carotenoids are associated with yellow, orange, 
and red coloration and increased levels can lead to 
brighter coloration and changes in hue (Umbers et 
al., 2016). The consequences of limited carotenoid 
availability on ornamental coloration have been shown 
in both field and captive conditions (Hill, 1999; Brenes-
Soto & Dierenfeld, 2014). Healthier animals in good 
body condition, after meeting their physiological needs 
of pigments for immune and antioxidant response, can 
accumulate enough pigments to increase coloration, 
maximising sexual display (Hill, 1999). The preference 
of females for males with brighter coloration shows 
the choice for phenotypic quality connected with direct 
or indirect genetic benefits (Brenes-Soto et al., 2017). 
Striking coloration reveals an individual animal’s ability 
to provide material advantages, such as fertility, high 
quality territory, nutrition and the maintenance of the 
genetic variation (Andersson & Simmons, 2006, Zamora-
Camacho & Comas, 2019).
	 Previous studies have shown a clear link between 
skin coloration, body condition and health status in 
amphibians (Brenes-Soto et al., 2017), with animals with 

higher levels of glucose and protein concentration in the 
blood showing a darker yellow and orange coloration 
(Brenes-Soto et al., 2017). The faded coloration and lower 
body condition observed on animals kept at Mitsinjo 
breeding centre could be interpreted as a warning sign 
of animals’ health conditions.
	 Alteration of pigmentation could hypothetically affect 
potential recognition of breeding partners, perception of 
fitness, and could thus have an indirect effect on health 
and reproductive output (Crothers et al., 2011, Brenes-
Soto & Dierenfeld, 2014,  Ogilvy et al., 2012). All these 
factors contribute to the complexity of maintaining the 
frogs’ wellbeing in captivity (Speed & Ruxton, 2007). 
	 Species recognition is a fundamental problem for 
animals in social contexts (Kraaijeveld-Smit et al., 2006); 
skin coloration is also involved in the sexual behaviour 
of many species. The colour distance analyses using the 
spectral sensitivity of a diurnal poison frog have shown 
that frogs would be able to detect coloration differences. 
Diurnal species of amphibians, such as the golden 
mantella frogs, use visual signals as an important part of 
their courtship and mate selection (Maan et al., 2004), 
and bright coloration is an important one (Bowmaker, 
2015). For example, females of different taxa prefer to 
mate with more colourful or brighter individuals (Maan 
& Cummings, 2008, Ogilvy et al., 2012). Releasing 
animals with different skin coloration could, potentially, 
compromise their breeding opportunities and, for a 
reintroduction to be successful, individuals released for 
conservation purposes must not only survive but also must 
breed (Giligan & Frankham, 2003; Mathews et al., 2005). 
If reintroduced animals survived, there is a chance that 
due to this phenotypic difference, captive animals may 
be more likely to mate with other captive-born animals, 
which could lead to producing two morphologically 
separate populations of animals (Slade et al., 2014). A 
low frequency of breeding between captive-bred and 
wild animals also means that no improvement of the wild 
population’s genetic diversity and any possible negative 
genetic changes acquired in captivity would continue to 
be expressed in their offspring, limiting their fitness in 
the wild (Slade et al., 2014).
	 Aposematism is an important anti-predator strategy, 
which signals unprofitability of prey to a predator via 
conspicuous traits associated with unpalatability (Dreher 
et al., 2015). Captive-raised frogs have no alkaloids 
detectable in skin extracts, these mantelline frogs are 
dependent on dietary sources for their skin alkaloids 
(Daly et al., 1997) making them unpalatable. Potential 
predators for the golden mantella frogs would be reptile 
species such as Zonosaurus madagascariensis and 
Tamnosophis lateralis (Jovanic et al., 2009). The colour 
distance analysis using a model of snake and a lizard 
visual system showed significant and highly detectable 
differences in the skin coloration of frogs from Mitsinjo 
breeding centre in comparison to wild populations, 
suggesting that predators would be able to perceive 
these different colorations.
	 The colour distance analyses done using the human 
visual system (Bowmaker, 2015) demonstrated that 
keepers would be able to detect the different coloration 
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in the animals they manage from wild conspecifics. This 
could be used as a measurement to select animals with 
greater colour similarities to the wild populations for 
reintroduction purposes. Colour charts are commonly 
used to evaluate colour scores of animals in zoos (Brenes-
Soto & Dierenfeld, 2014); although this is a qualitative 
measurement, a species-specific coloration chart, 
could be produced and used as a health/management 
parameter. Frogs kept under optimal condition would 
have a more similar coloration to their wild counterparts; 
that is, a health check with less need to handle animals.
	 Mantella aurantiaca is a critically endangered frog 
with reintroduction as part of its Species’ Action Plan 
to help mitigate the environmental impacts on the 
species’ natural distribution (Edmonds et al., 2015).  
It is important to consider the present results when 
thinking about releasing M. aurantiaca back to the wild. 
The aposematic coloration plays an important role on 
the behaviour and ecology of many species, making 
the results presented here important to consider when 
planning reintroductions.  Pre-release assessment 
should also take  into account the physical condition, and 
include a colour assessment as part of the process.
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