The extinct anuran family Palaeobatrachidae Cope extends from the Late Jurassic to the Plio-Pleistocene (Meszoely et al., 1984). The most abundant genus, Palaeobatrachus, occupied a broad adaptive zone in space and in time, occurring in both the Old and New World, and existing from Cretaceous through Miocene times. The ecological niche of Palaeobatrachus is thought to have been similar to that of the modern highly aquatic pipid frog Xenopus. Palaeobatrachids have been reported from the British Isles only from a single Late Eocene locality at Headon Hill on the Isle of Wight (Rage & Ford, 1980; Meszoely et al., 1984), and from another Late Eocene locality on the sea at the nearby Hordle Cliff, Hampshire, (Milner et al., 1982). These fossil remains did not include ilia.

British palaeobatrachid material in Rage & Ford (1980) and Milner et al. (1982) was referred only to the family Palaeobatrachidae. Meszoely et al. (1984), however, described a new genus and species of palaeobatrachid, Albionbatrachus wightensis, from Isle of Wight material collected at Headon Hill (Totland Bay Member, Headon Hill Formation, Late Eocene, Isle of Wight, England. B, left ilium from the Late Paleocene of Cernay, France, drawn from a photograph in Vergnaud-Grazzini & Hoffstetter (1972). C, left ilium from the Rijksuniversiteit Utrecht Collection, Early Oligocene of Belgium, after Estes & Sanchiz (1982). Abbreviations are: g = glutaeus tubercle, i = iliolobularis-iliofemoralis attachment. The 3 mm line applies to all three drawings.

Albionbatrachus wightensis was diagnosed on the basis of the frontoparietal as a palaeobatrachid frog that closely resembles Palaeobatrachus sp. from Oligo-Miocene deposits at Laugnac, France, discussed by Vergnaud-Grazzini & Hoffstetter (1972). The Isle of Wight frontoparietal differs from the French specimen only in having spur-like prootic processes (Meszoely et al., 1984, Figs. 1-3). The referred atlas, synsacrum, vertebrae, and angular were described anatomically, but they were not compared with similar elements in other Palaeobatrachus. This is apparently because many palaeobatrachid fossils consist of skeletons embedded in matrix in such a way that details of individual bones are difficult to see.

The British ilium. Estes & Sanchiz (1982) showed that ilia of palaeobatrachids are diagnostic to the generic and the specific level, and compared their new North American species, Palaeobatrachus occidentalis, with various European fossils of Palaeobatrachus on the basis of iliac structures and their muscle attachments.

The British left ilium (Michigan State University Museum Vertebrate Paleontology Number 1360, Fig. 1A) was collected by David Harrison in 1991 at the Isle of Wight Totland Bay Locality, a stratigraphic equivalent of the Headon Hill Locality. The fossil is so well-preserved that specific iliac features and muscle origins may be easily discerned.

Based on these features, MSUVP 1360 represents the genus Palaeobatrachus. It most specifically resembles a specimen referred to as Palaeobatrachus sp. from the Rijksuniversiteit Utrecht collection Early Oligocene of Belgium (Fig. 1C) figured by Estes & Sanchiz (1982). Unfortunately, more specific information is not available for this specimen. In the British and the Belgian specimens (Figs. 1A,C) the dorsal tubercle from which the glutaeus muscle arises is elongate and a smaller tubercle from which the iliolobularis and iliofemoralis muscles arise is adjacent to it posteriorly.

In other Palaeobatrachus species the glutaeus tubercle may be short and the iliolobularis and iliofemoralis attachment obscure (Fig. 1B) and/or the two tubercles may be separate (see iliac drawings in Estes & Sanchiz, 1982; Fig. 4).

There is a problem regarding the status of the Isle of Wight palaeobatrachid material. We have one genus, Albionbatrachus, described on the basis of a single frontoparietal bone that differs from Palaeobatrachus in a character that could be specifically or even individually variable. Yet a well-preserved ilium appears to be almost identical to a lower Oligocene Palaeobatrachus sp. from Belgium. Both of these Isle of Wight bones were collected from stratigraphically equivalent horizons. Other British palaeobatrachid bones appear to be undiagnostic beyond the familial level. Obviously more complete palaeobatrachid skeletons are needed to clear up the taxonomic uncertainties.
Acknowledgements. I gratefully acknowledge David Harrison who collected the Isle of Wight *Palaeobatrachus* ilium and donated it to the Michigan State University Museum. I thank Andrew Milner and Zbynek Rocek for reviewing this note. Teresa Petersen drew Figs. 1A and 1B.

REFERENCES


Accepted: 19.6.95